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Foreword

This introductory course addresses some aspects of relativistic quantum mechanics,
provides the basic principles of Quantum Field Theory (QFT) and should contribute to
an easy reading of general textbooks on the subject. It develops a good understanding of
the key ideas of field theory and introduces some calculation methods, but is surely not
complete in the formulation of perturbative expansions and in the discussion of the Feyn-
man diagram techniques. QFT is the theory which best describes elementary particles
and their interactions. It is automatically a many-particle theory and allows to perform
calculations that have accurate agreements with experiment. For example, in Quantum
Electrodynamics (QED), the anomalous electron magnetic moment and the Lamb shift
(splitting between 2s1/2 and 2p1/2 states of H-atom) are predicted with high precision.
However, field theory is not entirely satisfactory and cannot be compared with the nice
mathematical theory of general relativity. When we try to use it to calculate physical
quantities, we encounter infinite results. Making sense of these infinities, i.e. performing
renormalization, occupies a large part of any books of QFT. This question will unfortu-
nately not be addressed in this lecture.

A field is a mathematical quantity which takes a value at every point in space-time.
We are already familiar with electric and magnetic vector fields E(r, t), B(r, t). The real
or complex scalar field φ(r, t) is another example. Generally speaking, fields are classified
according to their behaviour under symmetry transformations. All along this lecture, we
will first consider the field as a classical quantity whose values, at each space-time po-
sition, play the role of dynamical coordinates.Then, the quantization will be performed
by direct application of the canonical quantization rules. Even if QFT is our announced
goal, an important part of this course will be devoted to relativistic quantum mechan-
ics. Generally, relativistic quantum mechanics and QFT are studied separately. Here, we
may try to present them together by continually emphasizing their differences. The main
difference between the two essentially concerns the number of particles. Both are using
tensor quantities like contravariant or covariant space-time four-vectors

(xµ) = (ct, r) (xµ) = (ct,−r) µ = 0, 1, 2, 3 (1)

related by the metric

[gµν ] = [gµν ] =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











xµ = gµαx
α. (2)

The transition from one to the other Lorentzian frame is given by the linear transformation

x′µ = Λµ
νx

ν (3)
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where (Λµ
ν) = Λ ∈ {Λ/ΛTgΛ = g} is a Lorentz matrix. The derivatives are given by the

contravariant and covariant components

(∂µ) ≡ (
∂

∂xµ

) = (∂ct,−∇) (∂µ) ≡ (
∂

∂xµ
) = (∂ct,∇) (4)

and it must be recalled that the components of the derivative with respect to xµ are
contravariant, but with a minus sign in the last three components.

In this lecture, QFT will be expressed in natural units

h̄ = c = ǫ0 = 1 . (5)

Then, by considering the well-known energy formulas

E = mc2 Energy and mass equivalence

E =
hc

λ
De Broglie wavelength

E = hν Einstein photon energy ,

we see that in natural units mass M , length L and time T have the dimension of a power
of the energy

[M ] = eV [L] = eV −1 [T ] = eV −1. (6)

A physical quantity Q depending on M,L, T can be converted from natural units to SI
units by dimensional analysis

[Q]SI = [Q]NU [h̄]µ [c]ν . (7)

This equation allows to determine the exponents µ and ν. As an example, we consider
the energy density W given by the formula

W (r) =
∫

d3p

(2π)3

√

m2 + p2 eip·r (8)

where p is the vector momentum and where the argument of the exponential function
must obviously be dimensionless. A quick look at formula (8) shows that, in SI units, we

have the energy factor ǫp =
√

(mc2)2 + (pc)2 and the dimensionless argument p · r/h̄.
Then, Eq. (7) and Eq. (8) allow to write the dimensional equation

(ML2T−2)L−3 = (MLT−1)3(ML2T−2) (ML2T−1)µ(LT−1)ν , (9)

from where we deduce µ = −3 , ν = 0 and finally get the formula (8) in SI units

W =
∫ d3p

(2πh̄)3

√

(mc2)2 + (pc)2 eip·r/h̄ . (10)

This dimensional analysis is valid for kinematic units. For electric units, the electric charge
must be considered and replaced by the dimensionless fine structure constant α

e2

4π
−→ α =

e2

4πǫ0

1

h̄c
. (11)
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Chapter 1

Introduction : From Classical
Mechanics to Field Theory

The term classical field is somehow misleading since most of the fields we will encounter
in this course arise from quantum mechanics. Independently of their quantum origin,
they are first treated within the framework of classical mechanics. They become quantum
fields, as soon as they are considered as operators acting on a Hilbert space and subject
to canonical quantization rules. This process received the inappropriate name of second
quantization.

One can grasp the proper meaning of field quantization by taking a simple example. A
function ψ(r, t) can generally be seen as a classical field governed by some Schrödinger-like
equation. On one side, if ψ is treated as probability amplitude i.e. as an element of the
Hilbert space of square integrable functions, we are involved in the quantum mechanics of a
one-particle system. On the other side, if the field ψ is interpreted as an operator acting on
a many-particle Hilbert space or Fock space, we are involved in the QFT. Actually, there
is only one quantization, but seen from different point of views. Both approaches make
sense as soon as the link between a many-particle system and a field theory is understood.
Actually, depending on the physical system we are considering, the function ψ(r, t) can
have three accepted meanings : classical field, probability amplitude or quantum field.

The best-known classical field we should primarily consider is the electromagnetic field,
which does not possess a one-particle interpretation. Its classical treatment has already
been discussed in the basic course of electrodynamics and its quantum interpretation as
photons of energy E = h̄ν appears in the introduction of quantum mechanics. However,
the genuine quantization of the electromagnetic field requires methods of quantum field
theory and brings out some difficulties which are specific to this massless field. We will
deal with at some later time.

This chapter introduces the main ideas of field theory. In a first step, it considers the
link between a N -particle system and a field by discussing the transition from a chain of
harmonic oscillators to a vibrating string. In a second step, it addresses the quantization
of the field in the light of the quantized simple harmonic oscillator1. A good understanding
of the concepts developed in this chapter is necessary for grasping the essential features
of QFT.

1The single-particle quantum harmonic oscillator is thoroughly treated in the basic course of quantum
mechanics. Harmonic oscillator is very common in physics as Sidney Coleman says : “The career of a young

theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction.”
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1.1 Mechanics and Quantum Mechanics of a System

of Particles

A mechanical system of n degrees of freedom can be characterized by a Lagrangian

L(q1, · · · , qn, q̇1, · · · , q̇n, t) (1.1)

depending on generalized coordinates qj and generalized velocities q̇j . The application of
the Hamilton’s principle

δ
∫ t2

t1
L dt = 0 (1.2)

leads to the Euler-Lagrange equations

d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= 0 j = 1, · · · , n . (1.3)

From the definition of the conjugate momenta

pj =
∂L

∂q̇j
(1.4)

and by using a Legendre transformation we get the Hamiltonian

H(q1, · · · , qn, p1, · · · , pn, t) =
n
∑

j=1

pj q̇j − L(q1, · · · , qn, q̇1, · · · , q̇n, t) . (1.5)

The calculation of the total differential of each member of this relation allows to derive
the canonical equations

q̇j =
∂H

∂pj
ṗj = −∂H

∂qj
. (1.6)

The Poisson’s bracket defined as

{f, g} =
n
∑

j=1

[

∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

]

(1.7)

leads to the canonical relations
{pj, qk} = δjk (1.8)

{qj, qk} = 0 = {pj, pk} . (1.9)

The quantization of this system of n degrees of freedom proceeds by replacing the
canonical variables qj, pj by time-dependent operators2 acting on a Hilbert space and
obeying the canonical commutation relations3

[

qj(t), pk(t)
]

= ih̄ δjk (1.10)

[

qj(t), qk(t)
]

= 0 =
[

pj(t), pk(t)
]

. (1.11)

2The operators O(t) are written in Heisenberg representation O(t) = eiHtOe−iHt where H is the
Hamiltonian of the system.

3The commutator of two operators is defined as [A,B] = AB −BA.
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1.2 Limit to the Continuum

The transition from an N -particle system to a classical field is illustrated by considering
a one-dimensional chain of elastically coupled atoms of mass m and coupling strength K.
At equilibrium, the atoms are at positions ia, i = 1, · · · , N as depicted in Figure 1.1. The
motion of the atoms around these equilibrium points is described by the displacement4

coordinates φi(t). It is governed by the Lagrangian containing a kinetic term T and an
elastic potential term V

L = T − V =
N
∑

i=1

[

1

2
mφ̇2

i −
1

2
K (φi+1 − φi)

2
]

. (1.12)

a i i+1

i i+1φ φ

x

Figure 1.1: Chain of elastically coupled atoms

We assume periodic boundary conditions φN+1(t) = φ1(t). This system of N particles
could be treated by methods of classical mechanics. We are rather interested to the con-
tinuum limit a → 0, for a fixed chain length ℓ = Na. Thus the number of degrees of
freedom diverges. Introducing the parameters xi = ia, the mass density µ = m/a, the
elastic modulus Y = Ka and the displacement φ(xi, t) = φi(t) as a function of the equi-
librium position of the atoms, the Lagrangian (1.12) takes the form

L = a
N
∑

i=1





1

2

m

a
φ̇i(t)

2 − 1

2
Ka

(

φi+1(t)− φi(t)

a

)2




= a
N
∑

i=1





1

2
µ

(

∂φ(xi, t)

∂t

)2

− 1

2
Y

(

φ(xi + a, t)− φ(xi, t)

a

)2




= a
N
∑

i=1

Li . (1.13)

At the limit a→ 0, the above Riemann sum is tranformed into the integral

L =
∫ ℓ

0
dx





1

2
µ

(

∂φ(x, t)

∂t

)2

− 1

2
Y

(

∂φ(x, t)

∂x

)2




=
∫ ℓ

0
dx L(∂tφ, ∂xφ) (1.14)

where we have defined the Lagrangian density L. The Lagrangian L describes the
longitudinal vibrations in a continuum medium or along a vibrating string. The continuous

4The positions of the masses m on the x-axis are given by xi(t) = x̄i + φi(t) where x̄i = ia.
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parameter x is not a dynamical variable, it serves merely as a continuous index replacing
the index i. Between discrete and continuous sytems, exists the following correspondence

φi(t) −→ φ(x, t)
i = 1, · · · , N , L = a

∑

i Li x ∈ [0, ℓ] , L =
∫ L dx . (1.15)

The function φ(x, t) is called scalar field and the dynamical coordinates are the values of
this field at every space point. Thus, a field has an uncountably infinite number of degrees
of freedom, which is the source of many of the difficulties in field theory. The sum over the
label i is replaced by an integral over dx. The spatial derivatives arise naturally from the
terms coupling neighbouring space points, when the separation goes to zero. The classical
mechanical treatment of this one-dimensional field can be carried on with the equation of
motion following from the Hamilton’s principle

δS ≡ δ
∫ t2

t1
dt
∫ ℓ

0
dx L = 0 (1.16)

subject to the condition δφ = 0 at the boundary points. The variation (1.16) is calculated
in the usual way and gives

δS = δ
∫ t2

t1
dt
∫ ℓ

0
dx
[

µ

2
(∂tφ)2 − Y

2
(∂xφ)2

]

=
∫ t2

t1
dt
∫ ℓ

0
dx
[

µ ∂tφ δ(∂tφ)− Y ∂xφ δ(∂xφ)
]

.

By using the commutativity property of derivative and variation and by performing an
integration by parts we obtain

∫ t2

t1
dt
∫ ℓ

0
dx
[

µ ∂2
t φ − Y ∂2

xφ
]

δφ− µ
∫ ℓ

0
dx ∂tφ δφ

∣

∣

∣

t2

t1
+ Y

∫ t2

t1
dt ∂xφ δφ

∣

∣

∣

ℓ

0
= 0 .

Finally, by using boundary conditions and by applying the fundamental lemma of varia-
tional calculus, we get the field equation

[

∂2
t − v2∂2

x

]

φ(x, t) = 0 (1.17)

which is nothing else then the wave equation for a vibrating string, where v2 = Y/µ.
The next step towards Hamiltonian mechanics requires new mathematical tools, since
the Lagrangian L (1.14) is becoming a functional5 and the conjugate momentum π(x, t)
must be defined as functional derivative6 of L with respect to the velocity φ̇ = ∂tφ

π =
δL

δφ̇
. (1.18)

5A functional F is an application from the space of functions f into IR, i.e. f 7−→
∫

F(f(x)) dx .
6The variation δF of a functional F is a linear map defined by the expression

F [f + h]− F [f ]− δF [h] = O(h) lim
‖h‖→0

O(h)/‖h‖ = 0 .

The functional derivative δF/δf is defined by the integral

δF [h] =

∫

δF

δf(x)
h(x) dx .

This definition becomes obvious if we consider the differential dF [h] =
∑N

j=1 ∂F/∂fj hj of a function of
N variables and take the continuum limit N →∞.

6



However, from the integral form (1.14) of L and by using the definition of the functional
derivative, we can see (do it !) that the conjugate momentum is equivalent to the partial
derivative of the Lagrangian density

π =
∂L
∂φ̇

. (1.19)

This can also be seen by considering a discretized Lagrangian integral. From the La-
grangian density (1.14), we obtain the conjugate momentum

π = µφ̇ (1.20)

and deduce the Hamiltonian of a vibrating string

H =
∫ ℓ

0
dx
[

πφ̇−L
]

=
∫ ℓ

0
dx

[

π2

2µ
+
Y

2
(∂xφ)2

]

. (1.21)

The solution of the linear differential equation (1.17) must satisfy periodic boundary
conditions in the interval [0, ℓ]. It can be found by expanding φ in a Fourier series

φ(x, t) =
1√
ℓ

∑

k

φk(t)e
ikx (1.22)

where k takes the discrete values k = 2πn/ℓ, n ∈ ZZ. The Hilbert basis eikx/
√
ℓ has the

orthonormality property
1

ℓ

∫ ℓ

0
ei(k−k′)xdx = δkk′ (1.23)

and the complex Fourier coefficients are then given by the integral

φk(t) =
1√
ℓ

∫ ℓ

0
φ(x, t) e−ikxdx . (1.24)

If we impose the real field condition φ(x, t) = φ(x, t)∗, we obtain

φk(t) = φ∗
−k(t) , (1.25)

and it is easy to check (do it !) the Parseval’s relation

∫ ℓ

0
φ(x, t)2dx =

∑

k

φk(t)φ−k(t) (1.26)

and the closure relation
1

ℓ

∑

k

eik(x−x′) = δ(x− x′). (1.27)

The Fourier expansion (1.22) inserted into the wave equation (1.17) provides the differ-
ential equation

d2φk

dt2
+ ω2

kφk = 0 (1.28)
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where ωk = v|k|. The general solution of this second order linear differential equation is
given by the linear combination

φk = Ake
−iωkt +Bke

iωkt Ak, Bk ∈ lC . (1.29)

Because of the choice of complex basis functions, the coefficients Ak, Bk must be complex,
but the real field condition (1.25) imposes Bk = A∗

−k. Thus, the field (1.22) can be written
as a superposition of normal modes

φ(x, t) =
1√
ℓ

∑

k

[Ak e
−iωkt + A∗

−k e
iωkt] eikx

=
1√
ℓ

∑

k

[Ak e
−i(ωkt−kx) + A∗

k e
+i(ωkt−kx)] . (1.30)

With this Fourier expansion and by using Parseval’s relation (1.26), the classical field
Hamiltonian (1.21) can be brought (homework) into the form

H =
∑

k

ω2
k(A

∗
kAk + AkA

∗
k) (1.31)

where we have set µ = 1 by simply changing the units of the field φ.

1.3 Field Quantization and Fock Space

It is now possible to see the natural emergence of field quantization7. Indeed, the
Hamiltonian structure (1.31), similar to a sum of quantum harmonic oscillators, suggests
to consider the Fourier coefficients Ak, A

∗
k as lowering and raising operators acting on a

Hilbert space8. In particular, the complex conjugate number A∗
k is replaced by the adjoint

operator9

A∗
k → A†

k . (1.32)

We reintroduce, for a while, the Planck’s constant h̄ in order to compare the Hamiltonian
(1.31) with the known results from quantum mechanics. A change of normalization brings
new operators.

ak =

√

2ωk

h̄
Ak (1.33)

and put the Hamiltonian (1.31) into the form

H =
1

2

∑

k

h̄ωk

(

a†kak + aka
†
k

)

(1.34)

7Here, it is not possible to directly use the quantization of the point mechanics. To quantize a contin-
uum system, we need a specific procedure. The electromagnetic field presents the same problem.

8This Hilbert space, called Fock space, will be defined further. But it must not be confused with the
Hilbert space of Fourier series that was mentioned above.

9In bracket notation, the adjoint A† is defined as 〈ϕ|A†|ψ〉 = 〈ψ|A|ϕ〉∗ and the symbol † is called
”dagger”. Moreover, the operators Ak stem from the coefficients of the Fourier expansion of the field,
whereas in the single-particle harmonic oscillator they are defined from position and momentum operators.
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which shows that a vibrating string can be described by an infinite number of non-
interacting quantum harmonic oscillators, one oscillator for each eigenmode of the string
motion. As for the single harmonic oscillator, commutation relations are assumed

[

ak, a
†
k′)
]

= δkk′ (1.35)

[ak , ak′] = 0 =
[

a†k , a
†
k′

]

. (1.36)

Expressed as a function of the operators ak and a†k , the fields φ(x, t) and π(x, t) become
operators10 too and read

φ(x, t) =
1√
ℓ

∑

k

√

h̄

2ωk
[ak e

−i(ωkt−kx) + a†k e
+i(ωkt−kx)] (1.37)

π(x, t) =
1√
ℓ

∑

k

√

h̄

2ωk
(iωk) [−ak e

−i(ωkt−kx) + a†k e
+i(ωkt−kx)]. (1.38)

From the commutations relations (1.35), (1.36) and by using the closure relation (1.27), we
verify (homework) that the fields satisfy equal-time canonical commutation relations

[φ(x, t), π(x′, t)] = ih̄δ(x− x′) (1.39)

[φ(x, t) , φ(x′, t)] = 0 = [π(x, t) , π(x′, t)] (1.40)

similar to those of the system of n degrees of freedom given in (1.11) and (1.10). Because
of the continuous parameter x, the Kronecker symbol becomes a δ-function. Conversely,
from (1.39), (1.40), the commutation relations of raising and lowering operators can be
immediately recovered. The generalization to three dimension can be reached in a similar
way11. The above field quantization approach will be repeated later for other fields like the
Klein-Gordon field, the photon field and the fermion field. Only some technical aspects of
the calculations will be different. Essentially, the sums will be replaced by integrals.

10These operators are not quantum observables, but they enter into the composition of observables
such as charge, momentum or energy.

11The generalization to three dimensions is straightforward. We introduce orthogonal unit vectors en(k)
for each k and for the three directions n = 1, 2, 3 in space. Then the vector expressions corresponding to
(1.37) and (1.38) can be written

v(r, t) =
1√
ℓ3

∑

k

3
∑

n=1

√

h̄

2ωk,n
en

[

ak,ne
−i(ωk,nt−k·r) + a†k,n e

+i(ωk,nt−k·r)
]

,

π(r, t) =
1√
ℓ3

∑

k

3
∑

n=1

√

h̄

2ωk,n
en

[

−ak,ne
−i(ωk,nt−k·r) + a†k,n e

+i(ωk,nt−k·r)
]

(iωk,n).

The canonical commutation relations of the quantum fields are

[vα(r, t) , πα(r′, t)] = ih̄δ(r− r′)δαβ

[vα(r, t) , vβ(r′, t)] = 0 = [πα(r, t) , πβ(r′, t)] .
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The Hilbert space upon which the field operators a†k , ak are acting is constructed from
the eigenstates of the single harmonic oscillator whose hamiltonian reads

H =
1

2
h̄ω

(

a†a+ aa†
)

. (1.41)

These eigenstates are given by the expression

|n〉 =
1√
n!

(a†)n|0〉 n = 0, 1, 2, 3, · · · (1.42)

where |0〉 is the one-particle ground state characterized by the property a|0〉 = 0. We
recall that the raising and lowering operators a†, a provide higher or lower states

a†|n〉 =
√
n+ 1 |n+ 1〉 a|n〉 =

√
n |n− 1〉 (1.43)

and satisfy the commutation relations
[

a, a†
]

= 1. (1.44)

[a , a] = 0 =
[

a† , a†
]

. (1.45)

The eigenvectors obey the orthonormalization condition

〈n|n′〉 = δnn′ (1.46)

and the energy eigenvalue equation reads

H|n〉 = h̄ω
(

n +
1

2

)

|n〉. (1.47)

The field-operator Hamiltonian (1.34) consists of a sum of an infinite number of single
harmonic oscillators. In order to identify the wave number kj of each single oscillator, we
write the Hamiltonian as a sum over j

H =
1

2

∑

j

h̄ωkj

(

a†kj
akj

+ akj
a†kj

)

. (1.48)

As usual, the eigenstates of the many-oscillator system are given by the tensor product of
the eigenstates of the single oscillators. Then, the lowest energy state, called the vacuum
state, takes the explicit form

|0〉 ≡ |0k1
, · · · , 0kj

, · · ·〉 = |0〉k1
⊗ · · · ⊗ |0〉kj

⊗ · · · (1.49)

and will be annihilated by the operators akj

I ⊗ · · · ⊗ akj
⊗ I ⊗ · · · |0〉 = 0 for all kj. (1.50)

Higher energy states are given by the tensor products

|nk1
, · · · , nkj

, · · ·〉 = |nk1
〉 ⊗ · · · ⊗ |nkj

〉 ⊗ · · · (1.51)
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where each of the nkj
= 0, 1, 2, · · · specifies the level of excitation of the kj mode of the

string. In a very natural way, these excitations of energy h̄ωkj
can be seen as parti-

cles12, with nkj
representing the number of particles in a given mode ωkj

. In that case,
the nkj

are called occupation numbers and the Hilbert space spawned by the vectors
|nk1

, · · · , nkj
, · · ·〉 is called Fock space. A Fock space is made from the direct sum of

tensor products of single-particle Hilbert spaces

F (H) =
∞
⊕

n=0

H⊗n. (1.52)

The a†kj
become creation operators and the akj

annihilation operators. Their action on
a vector of the Fock space reads

a†kj
|nk1

, · · · , nkj
, · · ·〉 =

√

nkj
+ 1 |nk1

, · · · , nkj
+ 1, · · ·〉 (1.53)

akj
|nk1

, · · · , nkj
, · · ·〉 =

√
nkj
|nk1

, · · · , nkj
− 1, · · ·〉. (1.54)

The choice of the factors
√

nkj
+ 1 and

√
nkj

preserves the normalization condition

〈nk1
, · · · , nkj

· · · |nk′

1
, · · · , nk′

j
, · · ·〉 = δk1k′

1
· · · δkjk′

j
· · · (1.55)

and also the commutation relation13

[

akj
, a†k′

j

]

= δkjk′

j
. (1.56)

The state |nk1
, · · · , nkj

, · · ·〉 is a state of n =
∑

j nkj
particles among which nkj

are in the
state of energy h̄ωkj

. As it can be seen from (1.53) and (1.54 ), this state is an eigenstate
of the number operator

N =
∑

j

a†kj
akj

(1.57)

with eigenvalue n. Indeed, the calculations give

N |nk1
, · · · , nkj

, · · ·〉 =
∑

j

a†kj
akj
|nk1

, · · · , nkj
, · · ·〉

=
∑

j

a†kj

√
nkj
|nk1

, · · · , nkj
− 1, · · ·〉

=
∑

j

√
nkj

√
nkj
|nk1

, · · · , nkj
, · · ·〉

= (nk1
+ nk2

+ · · ·) |nk1
, · · · , nkj

, · · ·〉
= n |nk1

, · · · , nkj
, · · ·〉 . (1.58)

12The oscillations of the string represent sound waves and the corresponding particles are called
phonons. In the case of electromagnetic radiation, the particles are called photons. The above-defined
Fock space is valid for bosons, where the occupation numbers nkj

can take large values. Fock space for
fermions will be defined later on.

13In the next chapters, fields and commutation relations will be subject to a Lorentz-invariant normal-
ization condition.
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More crucially, we remark that the ground state energy of the Hamiltonian (1.48) is
infinite, since the action of H on the vacuum gives

〈0|H|0〉 =
1

2
〈0|

∑

j

h̄ωkj

(

a†kj
akj

+ akj
a†kj

)

0〉

= 〈0|
∑

j

h̄ωkj

(

a†kj
akj

+
1

2

)

|0〉

=
∑

j

1

2
h̄ωkj

−→ ∞ . (1.59)

However, we know that only energy differences can be observed. We therefore normalize
the vacuum energy to 0 by convention and define the new ordered Hamiltonian

:H : =
∑

j

h̄ωkj
a†kj
akj

(1.60)

with the property
:H : |0〉 = 0. (1.61)

The symbol : : indicates that the creation operators are placed to the left of the
annihilation operators in a so called ordered product or normal product

:a†kj
akj

+ akj
a†kj

: = 2a†kj
akj

. (1.62)

The limit to the continuum nicely illustrates the two main steps of field quantization.
On one side, it shows that the N-particle displacement coordinates become a field φ(x, t)
whose Hamiltonian (1.31) looks like an infinite sum of single harmonic oscillators. On the
other side, it explains how the field function φ(x, t) can be replaced by an operator obeying
quantum commutation relations. In summary, field quantization can be characterized by
the following two statements :

• classical field φ(x, t) plays the role of continuous dynamical variables indexed by x,

• field quantization considers the field φ(x, t) as an operator subject to canonical
commutation relations and acting on a Fock space.

It is finally important to point out that quantum field theory introduces field opera-
tors satisfying canonical commutation relations and defines the corresponding quantum
states. Many-body quantum theory uses the inverse approach. It defines many-particle
symmetrized (antisymmetrized) quantum states on which creation and annihilation op-
erators act and deduces the commutation (anticommutation) relations.
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Chapter 2

Classical Field Mechanics

The concept of field mechanics has been introduced by considering the limit from a discrete
system to the continuum. In this chapter, we give a very sketchy discussion of the classical
field mechanics by considering a scalar field. The classical mechanics of other fields such
as vector fields or spinor fields will be presented briefly later at the same time as their
quantization. Additional informations on field classification, on Lagrangian expressions,
on symmetries, etc. can be found in textbooks.

2.1 Lagrangian and Field Equations

The limit to the continuum discussed in the preceding chapter shows in particular the
existence of a Lagrangian density

L(φ, ∂µφ) (2.1)

depending on the field φ(x) and its first derivatives. The function argument written x rep-
resents the space-time coordinates (t, r). The Lagrangian is given by spatial integration

L[φ] =
∫

d3r L(φ, ∂µφ) (2.2)

and therefore becomes a functional L : {φ} −→ IR. Classical mechanics can be easily
worked out. With the Lagrangian (2.2), we define the action

S =
∫

dt d3r L(φ, ∂µφ) (2.3)

which is, because of the d4x ≡ dtd3r integration, Lorentz-invariant. Then, the Hamilton’s
principle given by the variation condition

δS = 0 (2.4)

yields (homework) the Euler-Lagrange equation1

∂µ

(

∂L
∂(∂µφ)

)

− ∂L
∂φ

= 0 (2.5)

1The Einstein summation convention is understood on repeated indices µ = 1, 2, 3, 4.
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where as usual the condition δφ|∂Ω = 0 is assumed at the space-time boundary ∂Ω. The
extension to a many-component field φj is obvious. In order to establish the Hamiltonian
mechanics, we define, as in (1.19), the conjugate field by the partial derivative of the
Lagrangian density

π(x) =
∂L
∂φ̇

. (2.6)

It is now straightforward to write the field Hamiltonian

H =
∫

d3r H

=
∫

d3r
[

πφ̇−L
]

(2.7)

and to derive (homework) the canonical equations of motion

φ̇ =
δH

δπ
(2.8)

π̇ = −δH
δφ

. (2.9)

Finally, for two functionals F and G, the Poisson’s bracket

{F,G} =
∫

d3r

[

δF

δπ

δG

δφ
− δF

δφ

δG

δπ

]

(2.10)

provides (do it !) the classical canonical relations

{π(r, t), φ(r′, t)} = δ(r− r′) (2.11)

{φ(r, t), φ(r′, t)} = 0 {π(r, t), π(r′, t)} = 0 (2.12)

where the δ function replaces the Kronecker symbol appearing in the N -particle system.

2.2 Noether’s Theorem

As in classical mechanics, the link between symmetry transformations and conserved
quantities is provided by the Noether’s theorem. However, in field theory the problem
is a bit more complicated since both coordinates and fields are transformed. Symmetries
are described by parameter-dependent transformations

x′µ = fµ(x, α) (2.13)

φ′(x′) = F (φ(x), α) (2.14)

satisfying the conditions fµ(x, 0) = xµ and F (φ, 0) = φ. The quantity α can represent
several parameters. In order to study the local effect of these transformations, we write
the relations (2.13) and (2.14) as infinitesimal transformations

x′µ = xµ + δxµ

= xµ + fµ
i (x)αi +O(α2) (2.15)

φ′(x′) = φ(x) + δφ(x)

= φ(x) + Fi(x)αi +O(α2) (2.16)
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where δxµ and δφ are first variations and the summation is implicit over the index i
which enumerates the various parameters αi. The functions fµ

i (x) and Fi(x) generally
correspond to the second term of the Taylor expansion in power of α

fµ
i (x) =

∂fµ

∂αi
|αi=0 (2.17)

Fi(x) =
∂F

∂αi
|αi=0 . (2.18)

Examples : Parameter-dependent transformations

a) Translation in space-time :

x′µ = xµ + ǫµ (2.19)

φ′(x′) = φ(x) . (2.20)

The coordinates are transformed, but not the field.

b) Phase transformation :

x′µ = xµ (2.21)

φ′(x′) = eiαφ(x) = (1 + iα)φ(x) +O(α2) . (2.22)

The complex field is transformed, but not the coordinates.

The action
S =

∫

Ω
d4x L(φ, ∂µφ) (2.23)

is invariant under the transformations (2.15) and (2.16) if S ′ = S or δS = 0. Then
we say that the system possesses the corresponding symmetry. In order to draw the
consequences of a symmetry, let us calculate the variation

δS =
∫

Ω′

d4x′ L′(φ′, ∂′µφ
′)−

∫

Ω
d4x L(φ, ∂µφ) (2.24)

where the coordinate transformation gives

d4x′ = det

[

∂x′µ

∂xν

]

d4x . (2.25)

At the order O(α2), the Jacobian of the transformation becomes

det

[

∂x′µ

∂xν

]

= 1 + ∂ρf
ρ
i αi +O(α2) . (2.26)

Moreover, still at the order O(α2), by use of the chain rule, the derivative transforms as

∂′µφ
′(x′) = ∂νφ

′(x′)∂′µx
ν

= (∂νφ+ ∂νFiαi)(δ
ν
µ − ∂µf

ν
i αi) +O(α2)

= ∂µφ+ ∂µFiαi − ∂νφ∂µf
ν
i αi +O(α2) (2.27)

15



and its variation becomes

δ(∂µφ) = ∂′µφ
′(x′)− ∂µφ(x)

= (∂µFi − ∂νφ∂µf
ν
i )αi +O(α2). (2.28)

Thus, the variation of the action gives

δS =
∫

Ω′

d4x′L′ −
∫

Ω
d4xL

=
∫

Ω
d4x(1 + ∂µf

µ
i αi)

[

L+
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) + · · ·

]

−
∫

Ω
d4xL

=
∫

Ω
d4x(1 + ∂µf

µ
i αi)

[

L+
∂L
∂φ

Fiαi +
∂L

∂(∂µφ)
(∂µFi − ∂νφ∂µf

ν
i )αi

]

−
∫

Ω
d4xL

=
∫

Ω
d4x

[

∂L
∂φ

Fi +
∂L

∂(∂µφ)
∂µFi −

∂L
∂(∂µφ)

∂νφ∂µf
ν
i + L∂µf

µ
i

]

αi +O(α2). (2.29)

It is possible to collect all the divergences ∂µ and to show (homework) that the remaining
terms cancel each other or are equal to zero by application of the Euler-Lagrange equation.
We finally obtain the variation

δS =
∫

Ω
d4x ∂µ

[

∂L
∂(∂µφ)

Fi −
∂L

∂(∂µφ)
∂νφf

ν
i + Lfµ

i

]

αi . (2.30)

Owing to the invariance δS = 0, this equation provides a conserved Noether current

Θµ
i =

∂L
∂(∂µφ)

Fi −
(

∂L
∂(∂µφ)

∂νφf
ν
i − Lfµ

i

)

(2.31)

satisfying the divergence condition or continuity equation

∂µΘµ
i = 0 . (2.32)

A conserved current implies a conserved charge as it can be seen by integrating the
expression (2.32) on a volume V and by applying the divergence theorem

∫

V
d3r∂µΘµ

i =
∫

V
d3r

[

∂0Θ
0
i + ∂jΘ

j
i

]

=
d

dt

∫

V
d3rΘ0

i +
∫

∂V
Θi · dσ = 0. (2.33)

If we assume the usual boundary condition

Θi|∂V = 0 ,

we get the conserved charge

Qi =
∫

V
d3r Θ0

i (2.34)

satisfying the property
d

dt
Qi = 0 . (2.35)

The index i corresponds to the number of parameters of the transformation.
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Examples : Application of the Noether’s theorem

a) Space-time translation invariance

We consider the transformation given by a constant space-time translation ǫµ and by
a field φ unchanged

x′µ = xµ + ǫµ (2.36)

φ′(x′) = φ(x). (2.37)

Then, with δφ = 0 (Fi = 0) and x′µ = xµ + gµνǫν which means f ν
i → gµν , the Noether

current (2.31) provides the energy-momentum2 tensor

Θµν =
∂L

∂(∂µφ)
∂νφ− gµνL (2.38)

which, for a translational invariant system, satisfies the continuity equation

∂µΘµν = 0 . (2.39)

The conserved charge related to this equation is the quantity

P ν =
∫

d3rΘ0ν

=
∫

d3r [π∂νφ− g0νL] (2.40)

which satisfies the condition
d

dt
P ν = 0 . (2.41)

The first component of P ν corresponds to the Hamiltonian

P 0 =
∫

d3r [πφ̇− L]

= H (2.42)

and the three last components to the momentum

P = −
∫

d3r π∇φ (2.43)

as we will see later on by using Fourier expansions of the fields π(x) and φ(x).

2The energy-momentum tensor Θµν provides, for instance, the coupling of curvature with matter in
the Einstein’s equations of general relativity

Rµν − 1

2
gµνR = −8πGΘµν .
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b) Lorentz invariance
Another well-known example of symmetry follows from the Lorentz invariance of a

scalar field. The corresponding infinitesimal transformations read

x′µ = Λµ
νx

ν

=
[

δµ
ν + ǫµν +O(ǫ2)

]

xν (2.44)

φ′(x′) = φ(x) (2.45)

where the matrix Λ = (Λµ
ν) ∈ {Λ/ΛTgΛ = g} is the Lorentz matrix. The conserved

charge corresponds (homework) to the angular momentum

Qjk =
∫

d3r [xjT 0j − xkT 0j] j, k = 1, 2, 3 . (2.46)

where as in (2.43)
T 0j = −π∂jφ . (2.47)

For the spinor field ψ(x), we will encounter later on, we must in addition consider the
infinitesimal transformation resulting from the spinor field transformation

ψ′(x′) = S(Λ)ψ(x) . (2.48)

The calculations (homework) show that the Noether current contains the spin as intrinsic
angular momentum. Classical field theory together with group theory could be taught
during one semester. For our purposes, the above developments are sufficient.
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Chapter 3

The Klein-Gordon Field

3.1 Klein-Gordon Equation

How to describe a physical system represented by a real1 massive free scalar field φ(x) ?
Instead of starting with a Lagrangian density that could be derived from general principles
of covariance and simplicity, we rather consider an equation similar to the one given by
(1.17), the Klein-Gordon equation

(∂µ∂µ +m2)φ(x) = 0 . (3.1)

This equation written in natural units h̄ = 1 = c is the simplest covariant one, containing
a mass m and second derivatives. It can also be derived2 by interpreting the energy-
momentum relation E2 = p2 +m2 as a quantum operator. In another way, by application
of the Euler-Lagrange equation (2.5), it is easy to show (do it !) that the Klein-Gordon
equation follows from the Lagrangian density

L =
1

2
(∂µφ)2 − 1

2
m2φ2. (3.2)

The conjugate field is given by

π =
∂L
∂φ̇

= φ̇ (3.3)

and allows to write the Hamiltonian

H =
∫

d3r
[

πφ̇− L
]

=
∫

d3r
1

2

[

π2 + (∇φ)2 +m2φ2
]

. (3.4)

1The choice of a real scalar field is done for reasons of simplicity.
2The standard derivation of the Klein-Gordon equation starts from the relativistic energy-momentum

relation E2 = (pc)2 + (mc2)2 and uses the operator correspondences

E → ih̄
∂

∂t
p→ h̄

i
∇ .

Then, the resulting operators applied on the complex field φ(r, t) provide the equation
[

2− (
mc

h̄
)2
]

φ(r, t) = 0

where the notation 2 ≡ −∂µ∂µ = ∇2 − 1
c2

∂2

∂t2 has been introduced.
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The Klein-Gordon equation (3.1) is an homogeneous linear differential equation. We seek
covariant solutions by considering the four-dimensional Fourier transform3

φ(x) =
∫ d4p

(2π)4
φ̃(p)e−ipx (3.5)

which changes Eq. (3.1) into the eigenvalue equation

(p2 −m2)φ̃(p) = 0. (3.6)

We recall the notation px = p0t − p · r. The function φ̃(p) is everywhere zero except on
the mass shell where p2 = m2 and must therefore be proportional to a Dirac function4

φ̃(p) = C(p) δ(p2 −m2) . (3.7)

The proportionality factor C(p) can be specified by considering the identity

p2 −m2 = p2
0 − ǫ2p (3.8)

where ǫ2p = p2 +m2. Then, the well-known relation5

δ(p2 −m2) =
1

2ǫp
[δ(p0 − ǫp) + δ(p0 + ǫp)] (3.9)

shows that p0 only takes the two values p0 = ±ǫp and allows for a separation of C(p)
into two parts, one with respect to p0 > 0 and the other with respect to p0 < 0, each one
depending on the vector p only

C(p) = 2π

{

a(p) for p0 > 0
b(p) for p0 < 0

= 2π
[

θ(+p0)a(p) + θ(−p0)b(p)
]

. (3.10)

The step function θ(p0) and a conventional 2π factor have been introduced. Moreover, the
real scalar field condition φ(x) = φ∗(x) yields the relation

φ̃(p) = φ̃∗(−p) , (3.11)

which contains the function

φ̃∗(−p) = 2π
[

θ(−p0)a
∗(−p) + θ(p0)b

∗(−p)
]

δ(p2 −m2)

3The physical system we are considering here is infinite and therefore requires Fourier transform. It
can be compared to the finite periodic system of the vibrating string of size ℓ given in chapter 1.2, where
we have used Fourier series. But, we know that in the limit ℓ→∞ the Fourier series becomes a Fourier
transform through the replacement

∑+∞
k=−∞ →

∫ +∞

−∞ ℓdp where we have set p = k/ℓ for ℓ large.
4To be precise, one should use the concept of Dirac distribution or linear functional on the Schwartz

space, Dx0
: {f} → IR defined as Dx0

[f ] = f(x0).
Then the development (xDx0

)[f ] = Dx0
[xf ] = x0f(x0) = x0Dx0

[f ], leads to the eigenvalue equation
(x − x0)Dx0

[f ] = 0 . The Dirac functional Dx0
[f ] = f(x0) is the correct mathematical expression of the

Dirac ”function” symbolically written δ(x− x0) or
∫

δ(x − x0)f(x) dx = f(x0).

5For a proof of this relation, we consider a function u(x) with zeros at the points xi ∈ IR and
take tiny intervals [−ǫi, ǫi] around these zeros. Then, in each of these interval, we make a change of

variable y = u(x), dy = u′(x)dx and obtain
∫ +∞

−∞
δ(u(x))f(x) dx =

∑

i

∫ +ǫi

−ǫi
δ(y) f(x(y)) dy

|u′(x(y))| =
∑

i
1

|u′(xi)|
f(xi) =

∫ +∞

−∞

∑

i
1

|u′(xi)|
δ(x − xi) f(x) dx.
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and allows to deduce that b∗(−p) = a(p). Then, the field becomes

φ̃(p) = 2π
[

θ(p0)a(p) + θ(−p0)a
∗(−p)

]

δ(p2 −m2) . (3.12)

The integration of (3.5) over dp0 can be easily performed and provides the expression

φ(x) =
∫

d3p

(2π)3

∫ +∞

−∞
dp0

[

θ(p0)a(p) + θ(−p0)a
∗(−p)

]

δ(p2
0 − ǫ2p)e−ipx

=
∫

d3p

(2π)3

1

2ǫp

[

a(p)
∫ +∞

0
δ(p0 − ǫp)e−ipxdp0 + a∗(−p)

∫ 0

−∞
δ(p0 + ǫp)e−ipxdp0

]

=
∫

d3p

(2π)32ǫp

[

a(p) e−i(ǫpt−p·r) + a∗(p) ei(ǫpt−p·r)
]

that leads, with the obvious notation px = ǫpt − p · r, to the formula for a free classical
Klein-Gordon field

φ(x) =
∫ d3p

(2π)32ǫp

[

a(p) e−ipx + a∗(p) eipx
]

. (3.13)

The word free means that the field is not subject to external forces and is non-interacting
with other fields. Moreover, the above calculations show that, despite a three-dimensional
integration, the expression (3.13) is still Lorentz-invariant since it is identical to the Fourier
transform (3.5). We therefore conclude that the quantity

d3p

(2π)32ǫp
(3.14)

is a Lorentz-invariant measure. Actually, this procedure of covariant Fourier expansion
will be implicitly applied to the other fields we will encounter later on. A question to ask
oneself : what is the expansion form for a complex scalar field ? The answer can be found
by looking at formula (3.11) and (3.13).

If we want to extend the study of the relativistic scalar field to non-fre field, we can
add a source density ρ(x) to the Klein-Gordon equation

(2−m2)φ(x) = ρ(x) . (3.15)

With the Feynman propagatorGF (x−x′) or Green’s function defined by the equation

(2−m2)GF (x− x′) = δ(4)(x− x′) , (3.16)

the solution of Eq. (3.15) can be written

φ(x) =
∫

d4x′GF (x− x′) ρ(x′) . (3.17)

Then, the four-dimensional Fourier transform

GF (x− x′) =
∫ d4p

(2π)4
G̃(p) e−ip(x−x′) (3.18)
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allows to write Eq. (3.16) in the algebraic form (p2 − m2)G̃(p) = 1 which provides the
Feynman propagator in p-space

G̃(p) =
1

p2 −m2
. (3.19)

By inserting G̃(p) into (3.18), we arrive at the four-dimensional integral

GF (x− x′) =
∫

d4p

(2π)4

e−ip(x−x′)

(p0)2 − (p2 +m2)
(3.20)

whose solution is not unique. The integrand has two poles at p0 = ±ǫp.

Im p 0 Im p 0

Re p 0 Re p 0p 0 = ε p

p 0 = − ε
+ i εε p=0p −

i εp 0 = ε p −

p

’

’

Figure 3.1: Integration path

These poles can be avoided by a convenient choice of integration paths in the complex
p0-plane. On the path depicted in Figure 3.1, the integral (3.20) takes the form

GF (x− x′) =
∫

d4p

(2π)4

e−ip(x−x′)

p2 −m2 + iǫ
(3.21)

where the parameter ǫ displays the infinitesimal displacements6 of the poles in the upper
and lower half-plane respectively, and thus indicates the choice of the path. As asserted by
the Jordan’s lemma7, the integration over dp0 can be closed by large semi-circles of zero
contribution, in the upper half-plane if t− t′ < 0 and in the lower half-plane if t− t′ > 0.
This lemma thus shows that the integrals on the closed paths are equal to those along the
real axis. Finally, the application of the residue theorem8 gives the Feynman propagator
in x-configuration

GF (x− x′) = −i
∫ d3p

(2π)32ǫp

[

θ(t− t′) e−ip(x−x′) + θ(t′ − t) eip(x−x′)
]

(3.22)

6The replacement (p2 +m2)→ (p2 +m2 − iǫ), ǫ→ 0+ gives the poles p0 = ±(ǫp − iǫ′).

7Jordan’s lemma : If |f(z)| −→ 0 for |z| → ∞, then
∫

∩

f(z)eiλz −→ 0 for Ω→∞, λ > 0

∫

∪

f(z)eiλz −→ 0 for Ω→∞, λ < 0

where Ω is the radius of the semi-circles ∩ and ∪ drawn in the upper and lower half-plane respectively.

8Residue theorem : The closed integral of a meromorphic function f gives
∮

f(z)dz = 2πi
∑

Res f

for a counter-clockwise integration. The quantity Res f is the residue of the function f .
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where px = ǫpt−p ·r and where θ(t) is the step function. The calculation of the residues9

of the single poles p0 = ±ǫp has been done in the usual way. Other possible choices of
paths can be accepted or rejected in accordance with appropriate physical conditions10.
As a particular example, we come back to a three-dimensional system and consider a local
source of the form

ρ(r) = −gδ(r− r′) (3.23)

where g is a given coupling. Then, Eq. (3.15) is replaced by the stationary equation

(∇2 −m2)φ(r− r′) = −gδ(r− r′) (3.24)

whose solution can be calculated (homework) by means of a three-dimensional Fourier
transform which yields the well-known Yukawa potential

φ(|r− r′|) =
g

4π

e−m|r−r′|

|r− r′| . (3.25)

This short-range potentiel should be compared to the the Coulomb potential Φ(|r−r′|) =
q/(4π|r− r′|) which is the solution of the equation ∇2Φ(r− r′) = −qδ(r− r′).

Up to now in this chapter no reference to quantum mechanics11 has been done. The
scalar field φ(x) has been treated as a pure classical field. The next step toward relativistic
quantum mechanics could attempt to transform Eq. (3.15) into a system of two first-order
in time differential equations (why ?) and to calculate, for instance, probability ampli-
tudes. An explicit calculation of the scattering of a relativistic electron by the Coulomb
potential will be done in section 5.2. For the moment, we pursue one of the main goals of
this course, the field quantization.

3.2 Quantization of the Klein-Gordon Field

The scalar field quantization uses the considerations of section 1.3. The Fourier coefficients
a(p) are replaced by operators acting on the Fock space. In particular, the complex
conjugate is replaced by the adjoint operator

a∗(p) → a†(p) . (3.26)

Then, the Fourier expansion (3.13) becomes the Klein-Gordon field operator

φ(x) =
∫

d3p

(2π)32ǫp

[

a(p)e−ipx + a†(p)eipx
]

(3.27)

9Residue of a single pole :

Res±

[

e−p(x−x′)

(p0 − ǫp)(p0 + ǫp)

]

= lim
p0→±ǫp

(p0 ∓ ǫp)
e−p0(t−t′)+p·(r−r′)

(p0 − ǫp)(p0 + ǫp)

= ±e
∓ǫp(t−t′)+p·(r−r′)

2ǫp
.

10This choice of path corresponds to the time-ordered product we will introduce in section 6.4.
11The quantum correspondence relations between energy and time derivative, between momentum and

spatial derivatives can be ignored since the Klein-Gordon equation can be directly derived from the
classical Lagrangian density (3.2).
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and yields also the conjugate field operator

π(x) = φ̇(x) =
∫ d3p

(2π)32ǫp

[

a(p)e−ipx − a†(p)eipx
]

(−iǫp) . (3.28)

These two scalar field operators are the basic quantities of QFT. Their SI units can be
recovered by a dimensional analysis12. Field quantization requires, as in (1.40) and (1.39),
the equal-time canonical commutation relations

[φ(r, t), π(r′, t)] = iδ(r− r′) (3.29)

[φ(r, t), φ(r′, t)] = 0 = [π(r, t), π(r′, t)] (3.30)

from where we deduce (homework)

[

a(p), a†(p′)
]

= (2π)32ǫp δ(p− p′) (3.31)

[a(p), a(p′)] = 0 =
[

a†(p), a†(p′)
]

. (3.32)

The operators a†(p) and a(p) are interpreted respectively as creation and annihilation
operators of a particle of momentum p, called boson. Applied on the vacuum state |0〉,
they give

a†(p)|0〉 = |p〉 a(p)|0〉 = 0 . (3.33)

Starting from the vacuum normalization 〈0|0〉 = 1 and using the commutations relations
(3.31), we deduce the one-particle state normalization

〈p|p′〉 = 〈0|a(p)a†(p′)|0〉
= 〈0|a†(p′)a(p)|0〉+ 〈0|(2π)32ǫpδ(p− p′)|0〉
= (2π)32ǫpδ(p− p′). (3.34)

With the tensor product of two single states, we can define a two-particle state

|p1〉 ⊗ |p2〉 = a†(p1)a
†(p2)|0〉 ⊗ |0〉 . (3.35)

Because the operators a†(p) commute among themselves, the state is symmetric under
exchange of any two particles. A n-particle state13 of momenta pi is represented by the
tensor product of individual kets and is written

|p1,p2, · · · ,pn〉 = |p1〉 ⊗ |p2〉 ⊗ · · · ⊗ |pn〉 . (3.36)

12The conversion of the scalar field (3.27) into SI units is done by a dimensional analysis as explained at
the beginning of this course (7). From the Lagrangian density (3.2), we deduce the SI units of the field [φ] =
(ML2T−2)1/2L−1/2. Then, the four-dimensional Fourier tranform gives [φ̃] = (ML2T−2)1/2L7/2 and
formula (3.7), containing a δ function depending on the square energy, shows that [a] = (ML2T−2)5/2L7/2.
With ǫp =

√

(mc2)2 + (pc)2 and a dimensionless argument px/h̄, the field expression (3.27) leads to the
dimensional relation 1 = (MLT−1)3(ML2T−2)L4(ML2T−1)α(LT−1)β from where we deduce α = −4
and β = −1. Finally, in SI units, formula (3.27) takes the form

φ(x) =
1

h̄c

∫

d3p

(2πh̄)32ǫp

[

a(p)e−ipx/h̄ + a†(p)eipx/h̄
]

.

13For reasons of simplicity, we drop the occupation number representation |np1
, np2

, · · ·〉 of section 1.3.
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The action of a†(p) on this state creates a new particle of momentum p

a†(p)|p1,p2, · · · ,pn〉 = |p,p1,p2, · · · ,pn〉 (3.37)

and the action of a(p) follows from the definition of the adjoint

〈p′
2, · · · ,p′

n|a(p)|p1,p2, · · · ,pn〉 = 〈p1,p2, · · · ,pn|a†(p)|p′
2, · · · ,p′

n〉∗ . (3.38)

Actually, it is possible to establish (homework) the bracket relation

〈p′
1,p

′
2, · · · ,p′

n|p,p2, · · · ,pn〉

= (2π)3
n
∑

i=1

2ǫp′

i
δ(p− p′

i)〈p′
1, · · · , p̂′

i, · · · ,p′
n|p2, · · · ,pn〉, (3.39)

where the symbol ˆ means that the momenta p̂′
i must be ignored. Then, from this

expression and from the definition (3.38) of the adjoint, we deduce the action of the
annihilation operator

a(p)|p1,p2, · · · ,pn〉 = (2π)3
n
∑

i=1

2ǫpi
δ(p− pi)|p1, · · · , p̂i, · · · ,pn〉. (3.40)

The number operator N is defined as

N =
∫ d3p

(2π)32ǫp
a†(p)a(p) (3.41)

and its action on some general state gives the eigenvalue equation (check it !)

N |p1,p2, · · · ,pn〉 = n|p1,p2, · · · ,pn〉 (3.42)

where n is the number of particles. The Klein-Gordon Hamiltonian expressed in terms of
the operators a(p) and a†(p) takes the form (homework)

H =
1

2

∫

d3r
(

π2 + (∇φ)2 +m2φ2
)

=
1

2

∫ d3p

(2π)32ǫp
ǫp
[

a(p)†a(p) + a(p)a(p)†
]

. (3.43)

Then, the commutation relations (3.31) yields the Hamiltonian operator

H =
∫

d3p

(2π)32ǫp
ǫp
[

a(p)†a(p) + ǫp(2π)3δ(0)
]

(3.44)

which gives an infinite14 energy on the vacuum state |0〉. The energy normalization is given
as usual by the normal product (1.62) which allows to replace the Hamiltonian (3.43) by

14In order to see that H is infinite on the vacuum state |0〉, we use the following formal identity

(2π)3δ(0) = lim
k→k′

∫

V

d3r ei(k−k′)·r = V

where the limit of infinite volume should be taken at the end of the calculation. For a cut off p = Λ,
integral (3.44) applied on the vacuum gives a quartically diverging energy

H |0〉 = V
1

4(2π)2
Λ4

[

1 + o(
m2

Λ2
)

]

|0〉 Λ→∞ .
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the finite Hamiltonian

:H : =
∫

d3p

(2π)32ǫp
ǫp a(p)†a(p) . (3.45)

At this point, we come back to the classical Klein-Gordon field whose translational in-
variance provides the conserved charge

P = −
∫

d3r π∇φ (3.46)

defined in (2.43). With the field operators (3.27) and (3.28), it can be written in term of
creation and annihilation operators and leads (homework) to the momentum operator

P =
∫

d3p

(2π)32ǫp
p a†(p)a(p) (3.47)

and the corresponding eigenvalue equation

P|p′〉 = p′|p′〉 . (3.48)

To conclude this section concerning the quantization of the Klein-Gordon field, it is im-
portant to emphasize that in quantum field theory the quantity φ(r, t) is an operator
whereas r is a parameter or an index. This has to be compared with the single-particle
quantum theory, where φ(r, t) is the wave function specifying the state of the system, but
the position coordinate r is an operator. In the next chapters, we will adopt the same
procedure for defining the electromagnetic and the fermionic quantum field. But, still as
non-interacting quantum fields.
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Chapter 4

The Electromagnetic Field

4.1 Maxwell’s Equations and Gauge Field

The electromagnetic fields E and B are governed by the Maxwell’s equations

∇ · E = ρ ∇×B− ∂B

∂t
= j (4.1)

∇ ·B = 0 ∇× E +
∂E

∂t
= 0 (4.2)

and are connected to the gauge field Aµ = (Φ,A) by the relations

E = −∇Φ− ∂A

∂t
B = ∇×A (4.3)

that follow from the Poincaré’s lemma. The electromagnetic field tensor defined as a
function of the four-vector field Aµ(x)

F µν = ∂µAν − ∂νAµ (4.4)

is invariant with respect to the gauge transformation

A′µ = Aµ + ∂µχ . (4.5)

For a free field (jµ = 0), the elecromagnetic-field Lagrangian density corresponding to the
simplest invariant contraction of the field tensor can be written1 as

L = −1

4
F µνFµν

=
1

2
(E2 −B2) . (4.6)

Then, the field equations

∂α

(

∂L
∂(∂αAβ)

)

− ∂L
∂Aβ

= 0 ,

yield (homework) the source-free Maxwell’s equations

∂αFαβ = 0 . (4.7)

1In standard units we have L = − 1
4µ0

FµνFµν = 1
2 (ǫ0E

2 − 1
µ0

B2) with c2 = 1
ǫ0µ0

.
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The conjugate momenta are given by

π0 =
∂L
∂Ȧ0

= 0 (4.8)

πj =
∂L
∂Ȧj

= −F 0j = Ej j = 1, 2, 3 (4.9)

and the Hamiltonian takes the form

H =
∫

d3r
[

πµȦµ − L
]

=
1

2

∫

d3r(E2 + B2) (4.10)

where we made use of the equation for a free electric field ∇ · E = 0. The Maxwell’s
equations (4.7) are explicitly written

∂µ∂µAν − ∂ν(∂
µAµ) = 0 (4.11)

and, with the Lorentz gauge condition ∂µAµ = 0, yield the wave equation

2Aµ = 0 . (4.12)

The resolution of this vector equation can be done by using the same arguments (do it!) as
for the scalar field. The four-dimensional Fourier transform of Aµ(x) gives the eigenvalue
equation k2Ãµ(k) = 0 whose solutions Ãµ(k) = Cµ(k) δ(k2) leads to a field expression
similar to (3.13). However, the Lorentz gauge condition applied to plane-wave solutions
of the form

Aµ(x) ∼ aµ(k) e−ikx (4.13)

implies the orthogonality relation
kµa

µ = 0 . (4.14)

It follows that three of the four components of the four-vector [aµ(k)] are independant.
We are then left with one more degree of freedom than the number of polarizations2.
It is possible to avoid this additional degree of freedom by using the Coulomb gauge
conditions3

∇ ·A = 0 Φ = 0. (4.15)

These two conditions limit the number of field degrees of freedom to 2 and allow for a
simple physical interpretation. But, they have the drawback to hide the explicit relativistic
covariance. For each value of the wave vector k, we describe the degrees of freedom with
two unit vectors eα(k), α = 1, 2 called polarization vectors and generally written

[eµ
α(k)] =

[

0
eα(k)

]

α = 1, 2 . (4.16)

2This situation, which displays one unphysical degree of freedom, does not appear in the basic course
of electrodynamics where the calculations are performed with the E and B fields (without gauge field).

3The choice of this Coulomb gauge is possible in free space (i.e. for jµ = 0). Explicitly, it must be
shown (homework) that for a given Aµ, there exists a A′

µ = Aµ + ∂µχ such that ∇ ·A′ = 0 and A′
0 = 0.
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They have the properties

eα(k) · eα′(k) = δαα′ k · eα(k) = 0 eα(−k) = (−1)αeα(k) . (4.17)

The first relation is obvious, the second follows from the gauge condition ∇·A = 0 and the
last can be checked by a look at Figure 4.1. We finally arrive at the free electromagnetic
gauge field4

A(x) =
∫

d3k

(2π)32ǫk

2
∑

α=1

eα(k)
[

aα(k)e−ikx + a∗α(k)eikx
]

(4.18)

where aα(k), a∗α(k) α = 1, 2 are the Fourier coefficients. The argument of the exponential
function is written kx = ǫkt−k · r and the energy ǫk = |k| = ωk is fixed by the dispersion
relation k2 = 0.

(k)

−k

(−k)

(−k)(k)

k

e e

1

2 2
1e

e

Figure 4.1: Polarization vectors

We can extend the discussion by considering the presence of a current jµ(x) = (ρ, j).
Then the Maxwell’s equations

∂µF
µν = jν

subject to the Lorenz gauge condition ∂µAµ = 0 yield the inhomogeneous equation

2Aµ(x) = −jµ(x) . (4.19)

The solution of this equation can take the integral form

Aµ(x) = −
∫

d4x′DF (x− x′) jµ(x′) (4.20)

where the Green’s function DF (x− x′) relative to the operator 2 obeys the equation

2DF (x− x′) = δ(4)(x− x′) . (4.21)

By Fourier transforming this equation, we arrive (homework) at the solution

DF (x− x′) =
1

(2π)4

∫

d4k e−ik(x−x′)(− 1

k2
) .

The result of this integral is put into Eq. (4.20) and provides, by application of the
causality principle, the retarded potential of classical electrodynamics

Aµ
ret(x) =

1

4π

∫

d3r′ dt′
δ
(

t′ + |r−r′|
c
− t

)

|r− r′| jµ(x′) . (4.22)

4The field A(x) is real since it is connected to the real E and B fields by (4.3).
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4.2 Coulomb Gauge Quantization

Electrodynamics is a genuine field theory since its quantization can only be formulated as a
quantum field theory5. The quantization process for the gauge field Aµ(x) first considers
the classical field equation (4.12), it then identifies the conjugate momenta and finally
requires quantum canonical commutation relations for the field operators. Unfortunately,
the component A0 of the gauge field does not have a conjugate momentum since π0

given by (4.8) vanishes identically. We are thus faced with a new difficulty in performing
covariant electromagnetic field quantization. But, we already know how to circumvent this
problem. Instead of the Lorentz gauge condition, we apply the Coulomb gauge conditions
(4.15) and derive the classical field expression (4.18). Then, the replacement of the Fourier
coefficients by operators yields the electromagnetic field operator

A(x) =
∫

d3k

(2π)32ǫk

2
∑

α=1

eα(k)
[

aα(k)e−ikx + a†α(k)eikx
]

(4.23)

where a†α(k), aα(k) are the photon creation and annihilation operators of each polarization
eα(k), α = 1, 2. The argument of the exponential function is written kx = ǫkt−k · r and
the dispersion relation leads to the photon energy ǫk = |k| = ωk. Now, if we consider the
three non-zero components of the conjugate field

πj = −F 0j = −Ȧj = Ej j = 1, 2, 3 , (4.24)

the equal-time canonical commutation relation can be written
[

Aj′(r
′, t), πj(r, t)

]

= iδj
j′ δ(r− r′) . (4.25)

With the value (4.24) of πj, the left member takes also the form
[

πj(r, t), Aj′(r
′, t)

]

=
[

Ej(r, t), Aj′(r
′, t)

]

. (4.26)

But these two last relations are not consistent with the Maxwell’s equation

∇ · E ≡ ∂jE
j = 0 ,

since the application of the divergence on both sides of(4.25) brings out the contradiction

∂j

[

πj(r, t), Aj′(r
′, t)

]

= ∂jE
j(r, t)Aj′(r

′, t) −Aj′(r
′, t)∂jE

j(r, t) = 0

= −i δj
j′∂jδ(r− r′) = −i ∂j′δ(r− r′) 6= 0

How to get rid of it ? By considering the derivative of δ(r− r′) with respect to xj

∂jδ(r− r′) =
∫

d3p

(2π)3
eip·(r−r′) ipj 6= 0 ,

we see that the new defined delta function

δtr
jj′(r− r′) =

∫

d3p

(2π)3
eip·(r−r′)

[

δjj′ −
pjpj′

p2

]

(4.27)

5In the basic course of quantum mechanics, photons are used as phenomenological objects for discussing
the concept of quantum state, but they do not appear anymore afterwards.
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has a zero divergence (sum over j !)

∂jδtr
jj′(r− r′) = i

∫

d3p

(2π)3
eip·(r−r′)pj

[

δjj′ −
pjpj′

p2

]

= 0 .

Thus, in order to stay consistent with the Maxwell’s equation ∇ ·E = 0, we consider the
new quantum commutation relation

[Aj(r, t), πj′(r
′, t)] = −i δtr

jj′(r− r′) . (4.28)

From this relation, we can deduce6 (homework) the commutation relations for the creation
and annihilation operators

[

aα(k), a†α′(k′)
]

= (2π)32ωk δ(k− k′)δαα′ (4.29)

[

aα(k), aα′(k′)
]

= 0 =
[

a†α(k), a†α′(k′)
]

α, α′ = 1, 2. (4.30)

The Fock space is defined as in section 3.2. It contains photon states given by the tensor
product |nk1

, α1〉 ⊗ · · · ⊗ |nkj
, αj〉 ⊗ · · · of single states, where the nkj

are the occupation
numbers and the αj = 1, 2 represent the two polarizations. The covariant quantization of
the electromagnetic field is much more tricky, interested students can consult textbooks.

4.3 Spontaneous Emission

It is well known that an atom in an excited state can spontaneously emit radiation and
return to its ground state. The phenomenon is not predicted by a semi-classical quantum
theory that only describes the atomic state changes corresponding to absorption or to
stimulated emission. These changes are generated by an external classical electromagnetic
field. In order to explain spontaneous transitions, the electromagnetic field A must be
interpreted as a quantum field. The electron in an electromagnetic field can be described
by the Hamiltonian

H = :Hph: +
1

2m
(p + eA)2 + V (r) (4.31)

where the first term is the normal ordered free photon Hamiltonian

:Hph:=
∫

d3k

(2π)32ωk

ωk

2
∑

α=1

a†α(k)aα(k) , (4.32)

the second term represents a single charge −e in an electromagnetic field A and the third
term is the atomic potential. Owing to the Coulomb gauge condition ∇ · A = 0, the
operators p and A commute. This property is used for expanding the second term of
(4.31). By neglecting7 the quadratic term A2, we can separate the Hamiltonian (4.31)
into photonic, atomic and interacting parts

H = :Hph: +
p2

2m
+ V (r) +

e

m
A · p

= :Hph: +Hat +HI (4.33)

6In order to do that, we first invert the field (4.23) and its conjugate by means of scalar multiplications
∫

d3r′eip·r′eα(p)·A(r′),
∫

d3r′eip·r′eα(p)·π(r′), and then we calculate the commutator between creation
and annihilation operators.

7This approximation is valid insofar as the amplitude of the electromagnetic field is not to large.
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where the atomic and interaction Hamiltonians are defined as

Hat =
p2

2m
+ V (r) (4.34)

HI =
e

m
A · p . (4.35)

=

f

iE

E

i

f

hω E E−i fif

Figure 4.2: Initial and final states of the spontaneous emission

The electromagnetic field A is quantized, whereas the atomic Hamiltonian represents a
one-electron quantum system. As we know from the time-dependant perturbation theory,
the first order transition amplitude c

(1)
fi between an initial state |i〉 and a final state |f〉 is

given by the expression

c
(1)
fi =

1

ih̄

∫ T

0
dt e−iωif t

(

e

m
〈f |A · p|i〉

)

(4.36)

containing the frequency

ωif =
1

h̄
(Ei −Ef ) (4.37)

of energies Ei, Ef illustrated in Figure 4.2. The calculation of the expectation value
appearing in (4.36) requires the knowledge of free initial and final states. The commuting
operators Hat and :Hph: of the total Hamiltonian allow to write these free states as the
tensor product of atomic and photonic states

• initial state : |i〉 = |Ei〉 ⊗ |0〉

• final state : |f〉 = |Ef 〉 ⊗ |k, α〉 α = 1, 2

where the single states obey the relations

Hat|Eλ〉 = Eλ|Eλ〉 λ = i, f (4.38)

a†α(k)|0〉 = |k, α〉 α = 1, 2 . (4.39)

The quantities Eλ are the energy levels of the atom and the ket |k, α〉 created by the
operator a†α(k) represents a photon state of momentum k and polarization eα(k). We now
refer to the field expression (4.23) and consider the quantum field

A =
∫

d3p

(2π)32ωp

2
∑

α=1

eα(p)
[

aα(p)e−ipx + a†α(p)eipx
]

(4.40)

for which a further approximation can be assumed. Since the length r is of the order of
the Bohr radius a ≈ 0.53×10−10 m and the wavelengths λ ≈ 3×10−7 m are in the visible
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or ultra-violet range, we have pr = 2πa/λ ≈ 10−3. It is therefore justified to apply the
classical dipole approximation given by the expansion

e−ip·r = 1− ip · r + · · · (4.41)

where only the first nonvanishing matrix element will be retained. Thus, with the quantum
field (4.40), the ”bra” 〈k, α| = 〈0|aα(k) and the commutation relation (4.29), we calculate
the expectation value of the interaction Hamiltonian

〈f |HI |i〉 =
e

m
〈Ef | ⊗ 〈k, α|A · p|Ei〉 ⊗ |0〉

≈ e

m

∫ d3p′

(2π)32ωp′

2
∑

α′=1

〈k, α|a†α′(p′)|0〉eiωp′ t 〈Ef |eα′(p′) · p|Ei〉

=
e

m

∫

d3p′

(2π)32ωp′

2
∑

α′=1

〈0|aα(k)a†α′(p′)|0〉eiωp′ t 〈Ef |eα′(p′) · p|Ei〉

=
e

m

∫ d3p′

(2π)32ωp′

2
∑

α′=1

(2π)32ωp′δ(k− p′)δαα′eiωp′ t 〈Ef |eα′(p′) · p|Ei〉

=
e

m
eiωkt〈Ef |eα(k) · p|Ei〉. (4.42)

We go one step further by considering the commutation relation

[r, Hat] =

[

r,
p2

2m
+ V (r)

]

=
1

2m
[r,p2] =

i

m
p (4.43)

which allows to write the expectation value

〈Ef |eα · p|Ei〉 = −im〈Ef |eα ·
[

r, Hat

]

|Ei〉
= −im〈Ef |eα ·

(

rHat −Hatr
)

|Ei〉
= −im (Ei −Ef )〈Ef |eα · r|Ei〉
= −im

e
ωif 〈Ef |eα · µ|Ei〉 (4.44)

in terms of the electric dipole moment µ = er. The time integration of the probability
amplitude (4.36) gives the transition probability per unit time

Wfi =
|c(1)fi |2
T

=
ω2

if

T

∣

∣

∣〈Ef |eα · µ|Ei〉
∣

∣

∣

2 4 sin2[(ωk − ωif )T/2]

(ωk − ωif)2

=
ω2

if

T

∣

∣

∣〈Ef |eα · µ|Ei〉
∣

∣

∣

2
2πTδ(ωk − ωif) (4.45)

where the last equality is valid for T large. It remains to average over all k directions and
all polarizations en(k) n = 1, 2. For the integration over d3k, we use the Lorentz-invariant
measure and define the integration coordinates such that kz ‖ µ as shown in Figure 4.3.
The polarization vector e1, which is orthogonal to k, can be placed in the (µ,k)-plane.
Therefore the vector e2, orthogonal to k as well, is also orthogonal to the dipole vector µ
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and disappears from the formula. Then, with the dispersion relation k = ωk and the solid
angle element dΩk = sin ϑkdϑkdϕk, the integration gives

Wspon
fi = 2π ω2

if

∫

ω2
kdωkdΩk

(2π)32ωk

δ(ωk − ωif)
∣

∣

∣〈Ef |e1(k) · µ|Ei〉
∣

∣

∣

2

= π ω2
if

∫

dωkdΩk

(2π)3
ωk δ(ωk − ωif)

∣

∣

∣〈Ef |µ|Ei〉
∣

∣

∣

2
sin2 ϑk

= π
ω3

if

(2π)3

∣

∣

∣〈Ef |µ|Ei〉
∣

∣

∣

28π

3

=

∣

∣

∣〈Ef |µ|Ei〉
∣

∣

∣

2

3π
ω3

if . (4.46)

k

e
µ

kz

1
ϑ

Figure 4.3: Polarization vector e1 in the (µ,k)-plane

We see that the transition probability Wspon
fi is proportional to the third power of the

frequency and is non-zero even if the given initial state |i〉 = |Ei〉 ⊗ |0〉 is empty of
photons. This phenomenon is called spontaneous emission and cannot be explained
without the quantized field A(x). This is the first simple physical example that shows the
necessity of quantum field theory. The return to SI units is quite simple if we know that
the squared electron charge must be replaced by the fine structure constant

e2

4π
−→ α =

e2

4πǫ0

1

h̄c

and if we divide the expression (4.46) by c2. We thus obtain the transition probability per
second

Wspon
fi =

∣

∣

∣〈Ef |µ|Ei〉
∣

∣

∣

2

3πǫ0h̄c3
ω3

if . (4.47)
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Chapter 5

The Fermion Field

The fermion field is defined by the relativistic equation for a free electron of mass m.
What is the form of this equation ? The Klein-Gordon equation (3.1) cannot be used
because its probability density ρ is not positive definite. This can be seen by multiplying
Eq. (3.1) by φ∗, its complex conjugate by φ and by performing the difference between the
two. We obtain the continuity equation ∂ρ/∂t +∇ · j = 0, where

ρ =
h̄

2im
[φ∂tφ

∗ − φ∗∂tφ] j =
h̄

2im
[φ∗∇φ− φ∇φ∗] . (5.1)

Moreover, the Klein-Gordon equation, as second order in time differential equation, is not
suitable for describing a one-particle system with only one initial condition φ(r, t0). It can
be transformed into a system of two first order in time differential equations and used,
for instance, for describing the evolution of pairs of particles like charged π-mesons.

5.1 Dirac Equation and Dirac Plane Waves

In order to implement a relativistic equation for the electron, we follow Dirac and pick
up some guiding principles :

The probability amplitude ψ(x) must :

• have a many-component strucure describing also the spin,

• contain a complete information at t0, therefore obey a first-order in time equation,

• satisfy the superposition principle, therefore obey a linear homogeneous equation.

The relativistic equation must :

• be linear, homogeneous, Lorentz covariant and, owing to covariance, contain only
first-order derivatives with respect to time and space,

• preserve energy-momentum conservation i.e. imply the Klein-Gordon equation,

• be invariant by local gauge transformation

ψ′(x) = e−
ie0
h̄

χ(x) ψ(x) . (5.2)
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The most general equation satisfying the above-given conditions, excepted for the gauge
invariance, can be written under the form

∂tψ + α · ∇ψ + iKβψ = 0 K ∈ IR (5.3)

where the matrices α = (α1, α2, α3) and β must be Hermitian. In order to satisfy the
relativistic energy-momentum relation, Eq. (5.3) must leads to the Klein-Gordon equation
(3.1). This can be achieved (homework) by applying the operator (−∂t +α ·∇+ iKβ) on
Eq. (5.3), by setting K = m, and by requiring that the matrices α, β obey the relations

β2 = I (5.4)

αjβ + βαj = 0 (5.5)

αjαk + αkαj = 2δjkI j, k = 1, 2, 3 (5.6)

where I is the unit matrix. From the relation β2 = I and α2
j = I, we deduce that the

matrices α, β are also unitary1 and therefore have eigenvalues ±1. The dimension N of
these matrices is fixed by the relations (5.4), (5.5) and the calculation of the trace2

Tr(αj) = Tr(β2αj) = Tr(βαjβ) = −Tr(αjβ
2) = −Tr(αj) = 0 .

Thus, the matrices β, αj of eigenvalues ±1 and null trace have an even N . The value
N = 2 is excluded, since there exists only three 2 × 2 independent Hermitian matrices
such that AB +BA = 0. These are the Pauli matrices

σ1 =

[

0 1
1 0

]

σ2 =

[

0 −i
i 0

]

σ3 =

[

1 0
0 −1

]

. (5.7)

We then take the next even number N = 4 and choose the four matrices

β =

[

I 0
0 −I

]

α =

[

0 σ

σ 0

]

(5.8)

which satisfy the relations (5.4), (5.5) and (5.6). The probability amplitude can be written

ψ =











ψ1

ψ2

ψ3

ψ4











. (5.9)

The explicit covariant form of the Dirac equation follows from the definition of the four
vector

(γµ) = (β, βα) (5.10)

which has the property γ†µ = γµ and allows to put the relations (5.4) to (5.6) together

γµγν + γνγµ = 2gµν . (5.11)

1Unitary matrix : UU † = I = U †U

2The trace of a product of square matrices A,B,C has the cyclic property :
Tr(ABC) = Tr(CAB) = Tr(BCA) .
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Then, the Dirac equation for the free electron takes the covariant form3

[iγµ∂µ −m]ψ(x) = 0 . (5.12)

With the notation /∂ = γµ∂µ, we can also write

[i/∂ −m]ψ(x) = 0 . (5.13)

Moreover, one should show (see textbooks) that the Dirac equation is relativistic invariant
i.e there exist an invertible matrix S(Λ), depending on the Lorentz matrix Λ, and such
that

ψ′(x′) = S(Λ)ψ(x) and S−1(Λ)γµS(Λ) = Λµ
νγ

ν . (5.14)

The four-component quantity ψ(x) is called a Dirac spinor. If we now left-multiply Eq.
(5.13) by γ0 and take the complex conjugate transpose, we obtain the adjoint equation

i∂µψ(x)γµ +mψ(x) = 0 (5.15)

where the adjoint of ψ(x) is defined as

ψ(x) = ψ†(x)γ0. (5.16)

The adjoint equation can also be written

ψ(x)
[

i
←−
/∂ +m

]

= 0 , (5.17)

and the arrow means that the derivative acts on the function to the left. This notation
takes into account of the fact that the matrices ψ and γµ do not commute. By combining
the Dirac equation and its adjoint, we can derive in the usual way the continuity equation

∂µj
µ = 0 (5.18)

where we have defined the probability current

jµ = ψγµψ. (5.19)

The Dirac equation (5.12) can be derived from the Hermitian Lagrangian density

L =
i

2

[

ψ(x)/∂ψ(x)− ψ(x)
←−
/∂ ψ(x)

]

−mψ(x)ψ(x). (5.20)

For the verification, we consider the field ψ(x) and ψ(x) as independent variables and
apply (homework) the Euler-Lagrange equations with respect to the components ψα.
From the definition of the conjugate momenta

π =
∂L
∂ψ̇

=
i

2
ψ† π† =

∂L
∂ψ̇†

= − i
2
ψ, (5.21)

we can deduce (homework) the Hamiltonian density

H =
i

2

[

ψ†∂tψ − ∂tψ
† ψ

]

. (5.22)

3In standard units, the mass m must be replaced by the quantity mc/h̄.
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As for the scalar field and for the electromagnetic field, we seek solutions of the free-
electron Dirac equation (5.12). With the covariant Fourier transform

ψ(x) =
∫

d4p

(2π)4
ψ̃(p)e−ipx, (5.23)

we arrive at the eigenvalue equation

(/p−m)ψ̃(p) = 0 (5.24)

where /p = γµpµ. This equation can be explicitly written

(p0 −α · p− βm)ψ̃(p) = 0 (5.25)

and the matrix form (5.8) of α and β shows that ψ̃ can be separated into two two-
component spinors

ψ̃ ∼
[

ϕ
χ

]

. (5.26)

Then, the eigenvalue equation (5.25) takes the two-equation structure
[

p0 −m −σ · p
−σ · p p0 +m

] [

ϕ
χ

]

= 0 (5.27)

which has a non-trivial solution if its determinant is equal to zero. The calculation of the
determinant uses the property (σ · p)2 = p2 of the Pauli matrices4 and yields the two
energy eigenvalues

p±0 = ±
√

m2 + p2 ≡ ±ǫp (5.28)

that show a double degeneracy. The corresponding eigenspinors are determined by writing
Eq. (5.27) in two coupled equations

ϕ =
(σ · p)

(p0 −m)
χ χ =

(σ · p)

(p0 +m)
ϕ . (5.29)

Then, for |p| ≪ m, we see that the spinors behave as

ψ̃ → lim
p+

0
→m

[

ϕ
χ

]

= lim
p+

0
→m









ϕ

(σ·p)

(p+

0
+m)

ϕ









∼
[

ϕ
0

]

ψ̃ → lim
p−
0
→−m

[

ϕ
χ

]

= lim
p−
0
→−m









(σ·p)

(p−
0
−m)

χ

χ









∼
[

0
χ

]

and show a correct non-relativistic correspondence with respect to positive and negative
energies. We thus introduce the up (s = 1) and down (s = 2) spin states

ϕ1 = χ1 =

(

1
0

)

ϕ2 = χ2 =

(

0
1

)

(5.30)

4Properties of the Pauli matrices : σ2
1 = σ2

2 = σ2
3 = 1, σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2 .
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and infer, for the eigenvectors us and vs relative to p±0 = ±ǫp, the following expressions

us(p) ∼
[

ϕs
(σ·p)

(ǫp+m)
ϕs

]

vs(−p) ∼
[

− (σ·p)
(ǫp+m)

χs

χs

]

s = 1, 2 . (5.31)

The reason for the definition of vs with the argument −p will become clear below. From
Eq. (5.24) and (5.25), we see that we can also write the two equations

(/p−m) us(p) = 0 (5.32)

(/p +m) vs(p) = 0 (5.33)

where /p = (γ0ǫp − γ · p). With the following chosen normalization condition

u†s(p)us′(p) = 2ǫpδss′ = v†s(p)vs′(p) s = 1, 2 , (5.34)

we obtain (homework) the positive-energy and negative-energy spinors which are called
Dirac plane waves

us(p) e−ipx =
1√

ǫp +m

[

(ǫp +m) ϕs

σ · p ϕs

]

e−ipx (5.35)

vs(p) eipx =
1√

ǫp +m

[

σ · p χs

(ǫp +m) χs

]

eipx s = 1, 2 . (5.36)

In the second formula we have changed the sign of p and thus recovered a covariant

exponent px = (ǫpt− p · r). We also verify (homework) the orthogonality relations

ūs(p)us′(p) = 2mδs,s′ (5.37)

v̄s(p)vs′(p) = −2mδs,s′ (5.38)

ūs(p)vs′(p) = 0 = u†s(p)vs′(−p) (5.39)

where ū = u†γ0. It is straightforward but quite long to check (homework) that the closure
relations are given by

2
∑

s=1

us(p)ūs(p) = (/p +m) (5.40)

2
∑

s=1

vs(p)v̄s(p) = (/p−m). (5.41)

Finally, the Dirac plane waves

ψus
(x) =

1

(2π)3/2
√

2ǫp
us(p) e−ipx ψvs

(x) =
1

(2π)3/2
√

2ǫp
vs(p) eipx (5.42)

written with the usual normalization, satify the orthonormality relations

∫

d3r ψ†
us

(x)ψus′
(x) = δss′δ(p− p′) =

∫

d3r ψ†
vs

(x)ψvs′
(x). (5.43)
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We can now express the solution of Eq. (5.12) as a three-dimensional integral

ψ(x) =
∫ d3p

(2π)32ǫp
ψ̃(p)e−ipx (5.44)

which contains the Lorentz-invariant measure. The fonction ψ̃(p) is given by a linear
combination of the basis spinors us(p) and vs(p) s = 1, 2, and leads to the general
formulation of the spinor field

ψ(x) =
∫

d3p

(2π)32ǫp

2
∑

s=1

[

bs(p)us(p)e−ipx + d∗s(p)vs(p)eipx
]

(5.45)

for any complex number bs(p) and d∗s(p). For convenient reasons, we write the second
Fourier coefficient as complex conjugate.

At this point, we must give a quantum interpretation to the negative-energy Dirac
plane waves. The existence of free electron quantum states with negative energy allows
to radiate photons with infinite energy. Indeed, an electron with positive energy ǫp1

can
decay into one with negative energy −ǫp2

, radiating a photon with total energy ǫp1
+

ǫp2
. Going down in energy, the radiation of the photon could even be infinite. Dirac

circumvents the problem by supposing that all the negative-energy states are already
filled with electrons and introduced, in this way, a new ground state called the Dirac
sea. The Pauli exclusion principle prevents a positive-energy electron to occupy a filled
negative-energy state. However, one of these negative-energy electrons can still be excited
into a positive-energy state, whereupon it becomes a real electron, leaving behind a hole.
A hole is an absence of negative electric charge or a positive charge. This reasoning leads
to the prediction of the existence of a positively charged spin 1/2 particle, the positron,
discovered in cosmic rays, by C. D. Anderson in 1932.

5.2 Relativistic Electron in an Electromagnetic Field

The Dirac equation for an electron of charge −e in an electromagnetic field can be im-
plemented from the gauge principle which requires that the equation must be invariant
by local gauge transformation

ψ′(x) = eieχ(x) ψ(x). (5.46)

This relation inserted into Eq. (5.12) gives the expression

[iγµ(∂µ + ie∂µχ)−m]ψ′(x) = 0 (5.47)

which is clearly not invariant under the gauge tranformation (5.46). However, we remark
that the new term ie∂µχ can be balanced by a gauge field Aµ(x) obeying the gauge
transformation

A′
µ(x) = Aµ(x) + ∂µχ . (5.48)

It is then easy to verify that the equation
[

iγµ(∂µ − ieAµ)−m
]

ψ(x) = 0 (5.49)
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is gauge invariant i.e. keeps the same form after the gauge transformations (5.46) and
(5.48). The quantity Aµ can be identified with the electromagnetic field Aµ = (Φ,A)
which is connected to E and B by the relations

E = −∇Φ − ∂A/∂t B = ∇×A . (5.50)

The definition of the covariant derivative5

Dµ = ∂µ − ieAµ (5.51)

and the notation /D = γµDµ allow to write the Dirac equation for an electron in an
electromagnetic field in a nice and compact expression

[i /D−m]ψ(x) = 0 . (5.52)

The one-particle relativistic quantum mechanics can be illustrated by the two examples
given below.

5.2.1 Relativistic Hydrogen Atom

The calculation of the energy levels of the relativistic hydrogen atom can be done as usual
by considering a relativistic electron in the Coulomb potential

V (r) = − Ze
2

4πε0

1

r
. (5.53)

From the Dirac equation (5.49), we see that the energy observable is given by the time-
independant Dirac Hamiltonian

H = c

(

α · h̄
i
∇
)

+mc2β + V (r) (5.54)

whose eigenstates must belong to the Hilbert space of square integrable functions. The
energy E and the function u(r), depending also on the spin degree of freedom, are char-
acterized by the stationary wave function

ψ(r, t) = u(r) e−
i
h̄

Et (5.55)

and the corresponding Hamiltonian eigenvalue equation

H u(r) = E u(r) . (5.56)

We must solve this equation by using the standard methods of quantum mechanics. In
spherical coordinates, the Hamiltonian (5.54) has a radial dependence and also includes
the angular momentum operator

L = r× h̄

i
∇

5In SI units we have ψ′(x) = eie/h̄)χ(x) ψ(x) and Dµ = ∂µ − ie
h̄Aµ. Moreover, we can also remark

that the gauge field Aµ(x) appearing in the covariant derivative has a geometrical meaning similar to the
Christoffel symbols occuring in Riemannian geometry.
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and the Dirac spin operator

S =
h̄

2
Σ =

h̄

2

[

I 0
0 I

]

σ . (5.57)

This last operator can be related to the matrices α by the expression

α = γ5Σ γ5 =

[

0 I
I 0

]

.

How to display the radial and the spin-angular dependences of H ? This tricky task can
be achieved by considering the momentum operator h̄

i
∇ in the following two identities6

er × (er ×
h̄

i
∇) =

1

r
[er × L]

er × (er ×
h̄

i
∇) = er(er ·

h̄

i
∇)− h̄

i
∇

which lead to the expression

α · h̄
i
∇ = α · er(er ·

h̄

i
∇)−α · 1

r
[er × L]. (5.58)

Then, with the definitions αr = α · er , ∂/∂r = er · ∇ and by using the properties of the
Pauli matrices7, Eq. (5.58) can also be expressed (homework) as

α · h̄
i
∇ = αr

[

h̄

i

∂

∂r
+

2i

h̄

(L · S)

r

]

. (5.59)

We can then write the Dirac Hamiltonian (5.54) in a convenient form separated into radial
and spin-angular terms

H = c αr

[

h̄

i

∂

∂r
+

2i

h̄

(L · S)

r

]

+mc2β + V (r) . (5.60)

The operator L · S is called spin-orbit operator. It can be determined by considering
the total angular momentum8 operator

J = L + S (5.61)

whose square gives the expression

L · S =
1

2

[

J2 − L2 − S2
]

. (5.62)

It is now straightforward to check (do it !) that the set of operators
{

H,J2, Jz,S
2
}

(5.63)

6The vector er is the radial unit vector. The first identity simply results from the definition of the
angular momentum. The second is the well-known relation between vector en scalar products.

7The properties of the Pauli matrices given in the footnote4 are obviously also satisfied by the Dirac
spin operator Σ. Then, it is easy to verify that α1Σ2 = iα3, α2Σ3 = iα1, α3Σ1 = iα2 .

8The correct way to write this operator is J = L⊗ I + I ⊗ S where I is the identity operator.
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is a complete set of commuting observables, which allows to factorize the eigenvectors of
Eq. (5.56) into a tensor product of four vectors. Let us first consider the spin-angular op-
erators. From the eigenvectors Ylml

(ϑ, ϕ) (spherical harmonics) of the angular momentum
obserbvables L2, Lz and from the two-component9 eigenspinors χms

of the spin obserbv-
ables S2, Sz, the eigenstates of the commuting operators J2, Jz,L

2,S2 can be written in
terms of Clebsch-Gordan coefficients10 as a linear combination

Yjm(l|ϑ, ϕ) =
∑

ml,ms

〈l,ml,
1
2
, ms|j,m〉 Ylml

(ϑ, ϕ)χms
(5.64)

where the quantum numbers take the values

l = 0, 1, 2, · · · − l ≤ ml ≤ l ms = ±1

2

|l − 1

2
| ≤ j ≤ l +

1

2
m = ml +ms . (5.65)

With the eigenvalue equations

J2 Yjm(j ∓ 1
2
|ϑ, ϕ) = h̄2j(j + 1) Yjm(j ∓ 1

2
|ϑ, ϕ)

Jz Yjm(j ∓ 1
2
|ϑ, ϕ) = h̄ m Yjm(j ∓ 1

2
|ϑ, ϕ)

L2 Yjm(j ∓ 1
2
|ϑ, ϕ) = h̄2(j ∓ 1

2
)(j ∓ 1

2
+ 1) Yjm(j ∓ 1

2
|ϑ, ϕ)

S2 Yjm(j ∓ 1
2
|ϑ, ϕ) =

3

4
h̄2 Yjm(j ∓ 1

2
|ϑ, ϕ)

and from the definition (5.62) of the spin-orbit operator, we obtain

(L · S) Yjm(j ∓ 1
2
|ϑ, ϕ) = − h̄

2

2
[1 + κ] Yjm(j ∓ 1

2
|ϑ, ϕ) (5.66)

κ =

{

−(j + 1
2
) j = l + 1

2

+(j + 1
2
) j = l − 1

2
.

(5.67)

The Dirac Hamiltonian (5.54) commute (check it !) with the Dirac parity operator11.
Hence, we can construct even and odd eigenstates common to both operators and write

9The form of the spin operator (5.57) allows to consider two-component spinors.
10These Clebsch-Gordan coefficients 〈l,ml,

1
2 ,ms|j,m〉 are the coefficients of the linear transformation

which allows to pass, from the tensor product eigenbasis Ylml
(ϑ, ϕ)χms

common to the obserbvables
L2, Lz, S2, Sz, to the more appropriate eigenbasis Yjm(l|ϑ, ϕ) common to the observables J2, Jz, L2,S2.

11The parity operator is defined by the transformation P : r 7−→ −r. For the Dirac spinors, the parity
operator is defined by a general transformation such as (5.14), where the Lorentz matrix is replaced by
the spatial reflection

Λ =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









.

Then, up to an unimportant phase factor, we can show that the Dirac parity operator is given by

u′(r′) ≡ βu(r) = ±u(−r) .

Furthermore, we know that for a fixed j, the eigenfunctions Yjm(j ∓ 1
2 |ϑ, ϕ) have opposite parities

Yjm(j ∓ 1
2 |π − ϑ, ϕ+ π) =

{

(−1)(j−
1
2 ) Yjm(j − 1

2 |ϑ, ϕ)

−(−1)(j−
1
2 ) Yjm(j + 1

2 |ϑ, ϕ)

since the parity of the spherical harmonics is given by (−1)l with l = j ∓ 1
2 .
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the eigenfunctions in the general form

u(r) =
1

r

[

i F (r) Yjm(j ∓ 1
2
|ϑ, ϕ)

− G(r) Yjm(j ± 1
2
|ϑ, ϕ)

]

(5.68)

where the factors i and 1/r are introduced for convenient reasons. It is now quite an easy
task to apply the Hamiltonian (5.60) on these functions. Besides the well-defined effect of
the spin-orbit operator (5.66) and of the derivative ∂r, one must still specify the action of
the spin operator

αr = γ5 Σ · r̂ =

[

0 σ · r̂
σ · r̂ 0

]

(5.69)

whose pseudoscalar components σ · r̂ have the property

(σ · r̂) Yjm(j ∓ 1
2
|ϑ, ϕ) = −Yjm(j ± 1

2
|ϑ, ϕ) (5.70)

which can be derived (homework) from the commutator
[

Jk , σ · r̂
]

= 0, k = 1.2.3. With

these results, the Hamiltonian (5.60) is applied on the eigenfunctions (5.68) and leads (do
it !) to the following system of two differential equations

[

1

h̄c
(E −mc2) +

Zα

r

]

F (r) = −dG(r)

dr
+
κ

r
G(r) (5.71)

[

1

h̄c
(E +mc2) +

Zα

r

]

G(r) = +
dF (r)

dr
+
κ

r
F (r) (5.72)

where α is the fine structure constant.

α =
e2

4πε0

1

h̄c
≃ 1

137
. (5.73)

The solution of this system of first order differential equations can be found as usual by
a series Ansatz and by the application of the condition

∫ |u(r)|2d3r = 1. The calculations
are quite long and give as radial eigenfunctions the half-integer Laguerre polynomials and
as eigenvalues the following energy levels

En,j = mc2





1 +





Zα

n− (j + 1
2
) +

√

(j + 1
2
)2 − (Zα)2





2






−1/2

(5.74)

n = 1, 2, 3, · · ·
j = 1

2
, 3

2
, 5

2
, · · ·

This splitting of the energy levels due to spin and relativistic effects is called the fine
structure splitting. Another small splitting between 2s1/2 and 2p1/2 states, called the
Lamb shift, is only predicted by quantum field theory.

44



5.2.2 Integral Equation and Coulomb Scattering

Relativistic quantum mechanics is also well adapted to the description of scattering phe-
nomena. In these cases, Eq. (5.52) can be solved approximately by using a simple and
intuitive method proposed by Feynman. Let us first write the Dirac equation in the explicit
form

(i/∂ −m)ψ(x) = −e /Aψ(x) (5.75)

that can be easily transformed into an integral equation. The Green function or Feynman
propagator SF (x− x′) defined by the differential equation

(i/∂ −m)SF (x− x′) = δ(4)(x− x′) (5.76)

allows to write (check it !) the solution of (5.75) as an integral equation

ψ(x) = ψ0(x)− e
∫

d4x′ SF (x− x′) /A(x′)ψ(x′) (5.77)

where ψ0(x) is a solution of the free-electron Dirac equation. Starting from ψ0(x), Eq.
(5.77) can be iterated by successive substitution and gives the solution

ψ(x) = ψ0(x)− e
∫

d4x′ SF (x− x′)/A(x′)ψ0(x
′)

+ e2
∫

d4x′
∫

d4x′′ SF (x− x′)/A(x′)SF (x′ − x′′)/A(x′′)ψ0(x
′′)

− e3
∫

d4x′
∫

d4x′′
∫

d4x′′ . . . (5.78)

Thus, if SF (x−x′) is known, the field ψ(x) can be found at different orders of perturbation.
By Fourier transforming Eq. (5.76), we get the algebraic equation

(/p−m)S̃(p) = 1 (5.79)

where the function S̃(p) is determined by inversion

S̃(p) = (/p−m)−1 = (/p +m)(/p +m)−1(/p−m)−1 = (/p +m)(/p2 −m2)−1 . (5.80)

With the property (5.11) of the γµ matrices, the expression

/p2 = γµγνpµpν = 2pµp
µ − γνγµpµpν = 2p2 − /p2 , (5.81)

gives /p2 = p2 and allows to write the Feynman propagator in p-space

S̃(p) =
(/p +m)

(p2 −m2)
. (5.82)

Finally, by inserting S̃(p) into the Fourier transform, we arrive at the integral

SF (x− x′) =
∫

d4p

(2π)4

(/p +m))

(p2 −m2 + iǫ)
e−ip(x−x′) (5.83)

where, as shown in Figure 5.1, the small parameter ǫ displays the displacement of the
poles p0 = ±ǫp, and indicates the choice of the integration path in the complex p0-plane.
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By means of the Jordan’s lemma, this path can be closed by a large semi-circle in the
upper half plane if t − t′ < 0 and in the lower half plane if t − t′ > 0. The contribution
of these semi-circles tends to zero when the radius tends to infinity and shows that the
integration on the closed path is equal to the integration along the real axis. Finally, the
application of the residue theorem gives the Feynman propagator in x-configuration

SF (x− x′) = −i
∫

d3p

(2π)32ǫp

[

θ(t− t′) e−ip(x−x′)(/p +m)

−θ(t′ − t) eip(x−x′)(/p−m)
]

(5.84)

where p = pµ = (ǫp,p), ǫp =
√

p2 +m2 and θ(t) is the step function. With the closure
relation (5.41) and the Dirac plane wave (5.42), the propagator takes the form

SF (x− x′) = −i
∫

d3p

[

θ(t− t′)
2
∑

s=1

ψus
(x)ψus

(x′)− θ(t′ − t)
2
∑

s=1

ψvs
(x)ψvs

(x′)

]

. (5.85)

Im

Re

0

0p

p

p

p

0

0

=

= −

εp

εp

Figure 5.1: Integration path

For t→∞, we insert SF (x−x′) into Eq. (5.77) and obtain an explicit form of the integral
equation

ψ(x) = ψ0(x) +
∫

d3p
2
∑

s=1

ψus
(x)

[

ie
∫

d4x′ ψus
(x′) /A(x′) ψ(x′)

]

(5.86)

that allows, by use of the orthonormality condition (5.43), to express12 the probability
amplitude

〈ψus′
|ψ〉 = 〈ψus′

|ψ0〉+
∫

d3r ψ†
us′

(x)
∫

d3p
2
∑

s=1

ψus
(x)

[

ie
∫

d4x′ψus
(x′) /A(x′) ψ(x′)

]

= 〈ψus′
|ψ0〉+

∫

d3p
2
∑

s=1

δss′ δ(p− p′)
[

ie
∫

d4x′ψus
(x′) /A(x′) ψ(x′)

]

= 〈ψus′
|ψ0〉+ ie

∫

d4x′ ψus′
(x′) /A(x′) ψ(x′). (5.87)

Scattering phenomena are investigated by cross-section measurements that give essentially
the transition probability between free initial and final states. In quantum theory, the
transition probability from a state |ψ(t)〉 to a final state |ψf〉 is given by the expression

Pfi = |〈ψf |ψ(t)〉|2 (5.88)

12Use the closure relation
∫

d3r |r〉〈r| = 1 and obtain 〈φ|ψ〉 =
∫

d3r 〈φ|r〉〈r|ψ〉 =
∫

d3r φ(r)∗ψ(r).
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where |ψ(t)〉 satisfy the initial condition limt→−∞ |ψ(t)〉 = |ψi〉 and the bracket

Sfi = 〈ψf |ψ(t)〉 (5.89)

is called scattering amplitude or scattering matrix. The substitution of ψ(x) by
ψi(x) in (5.87) leads to the first-order approximation

S
(1)
fi = δfi + ie

∫

d4x ψ̄f (x)/Aψi(x) (5.90)

that depends only on the free initial and final states and on the electromagnetic field.
With the definition of the probability current jµ(x) = ψ̄f (x)γ

µψi(x), one can also write

S
(1)
fi = δfi + ie

∫

d4x jµ(x)Aµ(x) . (5.91)

p

p

q

i

f

Figure 5.2: Coulomb scattering

As an example of relativistic quantum scattering, let us consider the Coulomb scat-
tering of an electron on the potential

[Aµ(x)] = [Φ, 0] =

[

Ze

4π

1

|r| , 0
]

. (5.92)

The integration of (5.90) over dt gives, for f 6= i, the expression

S
(1)
fi = −i Zα

(2π)2
√

4ǫpf
ǫpi

δ(ǫpf
− ǫpi

)
∫

d3r
e−iq·r

r
ūf(pf)γ

0ui(pi) (5.93)

with q = pf − pi and with the fine structure constant13

α =
e2

4π
.

In order to calculate this integral, we must introduce a regularization factor given by the
exponential exp(−ǫr) where ǫ→ 0. We obtain (homework)

S
(1)
fi = i

Zα

(2π)2
√

4ǫpf
ǫpi

4πδ(ǫpf
− ǫpi

)
1

|q|2 ūf(pf)γ
0ui(pi) . (5.94)

The δ(ǫpf
− ǫpi

) function expresses the energy conservation. Moreover, we see that it
is possible to associate, to the distinct factors of this formula, graphical elements that

13In SI units, we have α = (e2/4πε0)(1/h̄c) .
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shapes the structure of the Feynman diagram of Figure 5.2. More details on these
correspondence rules will be given later on. The differential cross-section is provided by
the ratio between the probability transition per unit time and the flux of ingoing electrons.
It must be multiplied by the number of final momentum states included between pf and
pf + dpf and reads

dσ =
1

|ji|
|S(1)

fi |2
T

d3pf . (5.95)

The calculation (homework) of the flux of incident particles gives

ji = ψ̄γψ =
1

(2π)3

pi

ǫpi

(5.96)

where the function ψ are the Dirac plane waves (5.42). In order to evaluate the expression
(5.95), to integrate over the final energies and to calculate the mean value of the spins,
we need the following results :

• the square of the δ function gives

|δ(ω)|2 =

∣

∣

∣

∣

∣

∫ +T/2

−T/2

dt

2π
eiωt

∣

∣

∣

∣

∣

2

=
1

π2

sin2(ωT/2)

ω2
−→ T

2π
δ(ω) (5.97)

• the energy ǫ2p = p2 +m2 allows to write d3p = |p|2dpdΩ = |p| ǫpdǫpdΩ

• the enegy-momentum relativistic ratio reads

p2

ǫ2p
=

(
√

1− β2 mv)2

(
√

1− β2 m)2
= v2

• the spin sum becomes a trace, by use of the closure relation
∑

i,f

∣

∣

∣ufγ
0ui

∣

∣

∣

2
=

∑

i,f

(ufγ
0ui)(uiγ

0uf) =
∑

f

ufγ
0
∑

i

uiuiγ
0uf

=
∑

f

ufγ
0(/pi +m)γ0uf =

∑

a,b

∑

f

ua
f [γ

0(/pi +m)γ0]abub
f

=
∑

a,b

[γ0(/pi +m)γ0]ab
∑

f

ub
fu

a
f =

∑

a,b

[γ0(/pi +m)γ0]ab[/pf +m]ba

= Tr
[

γ0(/pi +m)γ0(/pf +m)
]

(5.98)

• the trace properties valid for any four-vectors Aµ, Bµ, Cµ, Dµ

1) Tr[ odd number of γµ] = 0

2) Tr[/A/B] = 4AµBµ = 4AB (5.99)

3) Tr[/A/B/C/D] = 4[(AB)(CD) + (AD)(BC)− (AC)(BD)] .

Putting all these results together (homework), we arrive, after a comeback to SI units, at
the Mott cross-section

dσ

dΩ
=

(

Zαh̄c

2ǫp

)2
[

1− β2 sin2(ϑ/2)
]

β4 sin4(ϑ/2)
(5.100)

where ϑ is the angle between pi and pf , ǫ
2
p = (mc2)2 + (pc)2, and β = v/c. At the

non-relativistic limit β ≪ 1, we recover the Rutherford cross-section.
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5.3 Quantization of the Fermion Field

As for the other fields, the quantization of the Dirac field considers the Fourier expansion
(5.45) and replaces the coefficients d∗s(p), bs(p) by creation and annihilation operators
d†s(p), bs(p) acting on a Hilbert space. We then arrive at the fermion field operator

ψ(x) =
∫

d3p

(2π)32ǫp

2
∑

s=1

[

bs(p)us(p)e−ipx + d†s(p)vs(p)eipx
]

(5.101)

where px = ǫpt− p · r and ǫ2p = p2 +m2. In order to express the Hamiltonian in terms of
creation and annihilation operators, from (5.101) we calculate the quantities ψ†, ∂tψ, ∂tψ

†

and put them into (5.22). Because of the minus sign in H , the cross terms cancel each
other and it remains

H =
i2

2

∫

d3r
∫

d3p d3p′

(2π)64ǫpǫ′p
ǫ′p
∑

s,s′

[

−2b†sbs′u
†
sus′ e

i(p−p′)x + 2dsd
†
s′v

†
svs′ e

−i(p−p′)x
]

.

The integration over d3r gives a Dirac δ(p−p′) function which absorbs the d3p′ integral.
Then, the application of the orthonormality relations

u†s(p)us′(p) = 2ǫpδss′ = v†s(p)vs′(p) (5.102)

leads (homework) to the Hamiltonian operator

H =
∫ d3p

(2π)32ǫp

2
∑

s=1

ǫp
[

b†s(p)bs(p)− ds(p)d†s(p)
]

. (5.103)

We emphasize the covariant normalization by keeping ǫp in the formula. If we define the
vacuum state |0〉 of the Dirac field as the state annihilated by all annihilation operators

bs(p)|0〉 = 0 ds(p)|0〉 = 0 , (5.104)

we could expect, like for the scalar field, an infinite ground state energy removed by the
normal ordering (1.62). However, the Hamiltonian (5.103) contains a minus sign and is
therefore not positive definite. Nor is the usual normal-ordered Hamiltonian, unless we
require that the operators anti-commute i.e. obey the new normal product

:ds(p)d†s(p): = −d†s(p)ds(p) . (5.105)

It turns out that the quantization of the fermion field needs an anticommutator sym-
bolically written

{A,B} = AB +BA . (5.106)

The requirement of anticommutation is obviously also valid for bs(p) operators and will
be strongly supported by the antisymmetry of the fermionic quantum states, as we will
see below. Then, the normal-ordered Hamiltonian

:H : =
∫

d3p

(2π)32ǫp

2
∑

s=1

ǫp
[

b†s(p)bs(p) + d†s(p)ds(p)
]

(5.107)

possesses the zero ground energy
:H : |0〉 = 0 . (5.108)
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The replacement of commutators by anticommutators leads to the new quantization rules
for fermion fields

{

ψa(r, t), ψ
†
b(r

′, t)
}

= iδ(r− r′)δab a, b = 1, · · · , 4 (5.109)

{ψa(r, t), ψb(r
′, t)} = 0 = {πa(r, t), πb(r

′, t)} . (5.110)

The calculation (homework) of these relations provides the anticommutation relations
for fermionic creation and annihilation operators

{

bs(p) , b†s′(p
′)
}

= (2π)32ǫpδss′δ(p− p′) (5.111)

{bs(p) , bs′(p
′)} = 0 =

{

b†s(p) , b†s′(p
′)
}

(5.112)

and also
{

ds(p) , d†s′(p
′)
}

= (2π)32ǫpδss′δ(p− p′) (5.113)

{ds(p) , ds′(p
′)} = 0 =

{

d†s(p) , d†s′(p
′)
}

. (5.114)

All couples of operators bs(p), ds(p) are obviously anti-commuting. In this theory, four
kinds of one-particle states can be created by the four operators b†s(p), d†s(p) s = 1, 2.
They are written as follows

|p, s〉+ = b†s(p)|0〉 (5.115)

|p, s〉− = d†s(p)|0〉 s = 1, 2 . (5.116)

Many-particle states are built as usual from the tensor product of single-particle states.
For example, a two-particle state reads

|p1, s1〉+ ⊗ |p2, s2〉+ = b†s1
(p1)b

†
s2

(p2)|0〉 ⊗ |0〉 (5.117)

where it is implicitly meant that the first operator acts on the first state and the second
operator on the second state. Moreover, the interchange of particles implies the anticom-
mution of the creation operators and assigns to the new state a relative minus sign

|p1, s1〉+ ⊗ |p2, s2〉+ = b†s1
(p1)b

†
s2

(p2)|0〉 ⊗ |0〉
= −b†s2

(p2)b
†
s1

(p1)|0〉 ⊗ |0〉
= −|p2, s2〉+ ⊗ |p1, s1〉+ . (5.118)

We deduce that the states of the Dirac field are antisymmetric under particle interchange

|p1, s1〉+ ⊗ |p2, s2〉+ = −|p2, s2〉+ ⊗ |p1, s1〉+ . (5.119)

We call these particles fermions14. Furthermore, if we suppose both momenta and both
spins equal to p and s respectively, we find

|p, s〉+ ⊗ |p, s〉+ = −|p, s〉+ ⊗ |p, s〉+ = 0 (5.120)

14The antisymmetry comes here in a natural way from the definition of the Dirac Hamiltonian and
from the quantization, whereas in many-particle quantum mechanics, it has to be taken for granted.
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and infer that two fermions can never be in the same state. This is precisely the Pauli
exclusion principle. The occupation number for fermions can only take the values zero
or one, whereas for bosons, like the scalar particle we considered previously, field operators
are commuting and so any number of them can be in the same state. By calculating the
total charge, it can be shown that the operator b†s(p) creates a particle with momentum
p and spin s, while the operator d†s(p) creates an antiparticle with momentum p and
spin s. Actually, the probability current (5.19) supplies (homework) the charge operator

Q = −e
∫

d3r :j0(x):

= −e
∫

d3r :ψ(x)γ0ψ(x):

= −e
2
∑

s=1

∫

d3p

(2π)32ǫp

[

b†s(p)bs(p)− d†s(p)ds(p)
]

(5.121)

where the terms b†s(p)bs(p) and d†s(p)ds(p) are the particle number operators of momen-
tum p and spin s. Thus, the application of the charge operator on the state |p′, s′〉+ given
by (5.115) provides

Q|p′, s′〉+ = −e
2
∑

s=1

∫

d3p

(2π)32ǫp
b†s(p)bs(p)|p′, s′〉+

= −e
2
∑

s=1

∫

d3p

(2π)32ǫp
b†s(p)bs(p)b†s′(p

′)|0〉

= −e
2
∑

s=1

∫

d3p

(2π)32ǫp
b†s(p)

[

−b†s′(p′)bs(p) + (2π)32ǫpδ(p− p′)δss′
]

|0〉

= −e
2
∑

s=1

∫

d3p

(2π)32ǫp
(2π)32ǫpδ(p− p′)δss′b

†
s(p)|0〉

= −e b†s′(p′)|0〉 = −e|p′, s′〉+ . (5.122)

The same operation carried out on the state |p′, s′〉− gives the result

Q|p′, s′〉− = e|p′, s′〉− . (5.123)

We deduces that b†s(p) creates a particle of charge−e (electron) and momentum p, whereas
d†s(p) creates a particle of charge +e (positron) and momentum p named antiparticle.

At the end of this study of free quantum fields, it is worthwhile to summarize the key
steps of field theory.

• Fields are first defined as classical quantities given by a Lagrangian or the corre-
sponding Euler-Lagrange equations. The values of the classical field Φ(r, t) at every
space point play the role of dynamical coordinates with an uncountably infinite
number of degrees of freedom labeled by r.

• On one side, a field Φ(r, t) interpreted as probability amplitude and governed by
the evolution equation belongs to (relativistic) quantum mechanics. In this case,
the position coordinate r is an operator. Examples of such systems are given by the
Dirac hydrogen atom (5.53) and the relativistic Coulomb scattering (5.75).
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• On the other side, a field Φ(r, t) interpreted as an operator acting on a Fock space
and obeying equal-time commutation or anti-commutation relations, leads to quan-
tum field theory that becomes automatically a quantum-mechanical theory of many
particles. In this case, the position coordinate r is merely a parameter. An example
of such field is supplied by the photon field (4.40) giving rise to the spontaneous
emission.

We have quantized the scalar field, the electromagnetic field and the fermion field. But,
for the moment, all these quantum fields have been considered as free. The real difficul-
ties of QFT appear when the fields are interacting. This problem requires perturbation
expansions and will be addressed in the next chapters.
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Chapter 6

Interacting Fields

So far, we have been basically dealing with free quantum fields. The equations of motion
have been given and solved in terms of Fourier transforms. As long as no interaction occurs,
the dynamics of a free quantum field is rather trivial : a state is given at some initial time
and the system remains in this state for all subsequent times. We now intend to describe
more realistic situations in which the field changes its state because of interactions as, for
instance, in the spontaneous emission.

Field theory was developed to describe scattering phenomena in which particles in-
teract each other. In a scattering experiment, particles come in from a long time in the
past, interact, and head out towards infinity. The goal of QFT is to calculate the quan-
tum mechanical scattering amplitude for an initial state to change into a final state and
to determine the transition probability or cross-section. Such calculations were already
performed for the relativistice transition probability (5.88). However, in QFT, the non-
commutativity of the field operators requires more technical means. The breakthrough
that made field theory calculations feasible came from the Feynman’s idea to write the
perturbation expansion with diagrams. However, the formulas corresponding to Feynmann
diagrams are diverging and need special treatment which makes sense to these formally
infinite terms. This procedure is called renormalization.

6.1 Interaction Picture and S-matrix

In quantum mechanics, there are various ways to treat the time evolution of a state.
These different manners, called pictures, are equivalent in the sense that, at the end, all
observable quantities have the same matrix elements. The Schrödinger and Heisenberg
pictures are probably the most familiar. Here, we will use a third one, the interaction
picture. Let us consider a physical system described by the time-independent Hamiltonian

H = H0 + H̄I (6.1)

where H0 is the free field part and H̄I the interacting part. The evolution of the quantum
state |ψS(t)〉 is described by the equation

i
d

dt
|ψS(t)〉 = H|ψS(t)〉 (6.2)

whose solution, for a time-independant Hamiltonian, can be written

|ψS(t)〉 = e−iH(t−t′) |ψS(t′)〉. (6.3)
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The interaction picture or Dirac picture is defined by the new quantum state

|ψ(t)〉 = eiH0t|ψS(t)〉 (6.4)

that satifies (check it !) the evolution equation

i
d

dt
|ψ(t)〉 = HI(t)|ψ(t)〉 (6.5)

containing the time-dependent interaction Hamiltonian

HI(t) = eiH0tH̄Ie
−iH0t. (6.6)

The time evolution of |ψ(t)〉 can also be described by a unitary operator UI(t, t
′) depending

on H and supplying the ket state

|ψ(t)〉 = UI(t, t
′)|ψ(t′)〉 (6.7)

where UI(t, t) = I. With the above definitions, it is possible to write

|ψ(t)〉 = eiH0t|ψS(t)〉
= eiH0te−iH(t−t′)|ψS(t′)〉
= eiH0te−iH(t−t′)e−iH0t′ |ψ(t′)〉 (6.8)

and deduce the explicit form of the evolution operator

UI(t, t
′) = eiH0te−iH(t−t′)e−iH0t′ . (6.9)

For describing the scattering processes, we consider at t → ±∞ free (non-interacting)
particles in the initial and final eigenstates |φi〉, |φf〉 of the free field Hamiltonian H0

H0|φα〉 = Eα|φα〉 α = i, f . (6.10)

The unitary operator which describes the evolution of states given at t′ ∼ −∞ to states
detected at t ∼ ∞ is written S and is called scattering matrix or S-matrix. Then, the
transition from the state S|φi〉 into the free final state |φf〉 is defined by the probability
amplitude

Sfi = 〈φf |S|φi〉 . (6.11)

On the other side, by considering the evolution operator (6.7), we see that the transition
can also be described by the following time limits

lim
t→∞

lim
t→−∞

〈ψ(t)|UI(t, t
′)|ψ(t′)〉. (6.12)

Thus, if we define initial and final states as

|φi〉 = |ψ(−∞)〉 |φf〉 = |ψ(+∞)〉 (6.13)

and identify the time limits (6.12) with the definition of the probability amplitude (6.11),
we arrive at a formal expression for the S-matrix

S ≡ lim
t→∞

lim
t′→−∞

UI(t, t
′) . (6.14)
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6.2 Chronological Product and Dyson Expansion

The evaluation of the S-matrix limit (6.14) is quite complicated. As we will see, it can be
replaced by a series expansion. From the definition (6.9), it is easy to verify (do it !) that
the evolution operator UI(t, t0) obeys a Schrödinger-like equation

i
d

dt
UI(t, t0) = HI(t)UI(t, t0) (6.15)

where UI(t0, t0) = I and HI(t) is the interaction Hamiltonian (6.6). Thanks to the in-
teraction picture, only the interaction Hamiltonian appears in Eq. (6.15) which can be
written as an equivalent integral equation

UI(t, t0) = I − i
∫ t

t0
dt1HI(t1)UI(t1, t0) (6.16)

suitable for iterative calculations. Starting from the initial replacement UI(t1, t0)→ I, we
successively substitute the new solutions into (6.16) and obtain the series1

UI(t, t0) = I − i
∫ t

t0
dt1HI(t1)

[

I − i
∫ t1

t0
dt2HI(t2) + · · ·

]

= I − i
∫ t

t0
dt1 HI(t1) + (−i)2

∫ t

t0
dt1

∫ t1

t0
dt2 HI(t1)HI(t2) + · · · (6.17)

If we want to calculate the limits t→∞ and t0 → −∞, we must rearrange the integrals
in such way to get the same upper limits. The many possible ways to write formula (6.17)
are organized with respect to the chronological product2 or time-ordered product.
For two bosons operators, it is defined as

T
[

HI(t1)HI(t2)
]

= θ(t1 − t2)HI(t1)HI(t2) + θ(t2 − t1)HI(t2)HI(t1) (6.19)

where θ(x) is the Heaviside function. For two fermion operators, because of their an-
ticommuting nature, the time-ordered product must allow for the change of sign when
interchanging two fermion fields. It reads

T
[

HI(t1)HI(t2)
]

= θ(t1 − t2)HI(t1)HI(t2)− θ(t2 − t1)HI(t2)HI(t1). (6.20)

After a rearrangement of the integrals in (6.17), according to the procedure sketched
above, it is possible to show that it results a series called Dyson expansion

S = lim
t→∞

lim
t0→−∞

UI(t, t0) = I+
∞
∑

n=1

(−i)n

n!

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtn T

[

HI(t1) · · ·HI(tn)
]

. (6.21)

1This series will be much more difficult to handle than those in (3.17) or (5.78) because here we are
dealing with operators.

2General definition : given S(n) the permutation group of n elements {1 · · ·n}, the chronological
product of the operators HI(t1), · · · , HI(tn) is defined as

T [HI(t1) · · ·HI(tn)] =
∑

π∈S(n)

ǫπ θ(tπ(1) − tπ(2)) · · · θ(tπ(n−1) − tπ(n))HI(tπ(1)) · · ·HI(tπ(n)) (6.18)

where ǫπ denotes the signature of the permutation of the fermion operators involved in this product.
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The proof of the Dyson expansion is quite difficult. We can nevertheless check it for n = 2
by performing the following calculations

∫ t

t0
dt1

∫ t

t0
dt2 T [HI(t1)HI(t2)]

=
∫ t

t0
dt1

∫ t

t0
dt2 [θ(t1 − t2)HI(t1)HI(t2) + θ(t2 − t1)HI(t2)HI(t1)]

=
∫ t

t0
dt1

∫ t1

t0
dt2HI(t1)HI(t2) +

∫ t

t0
dt1

∫ t

t1
dt2HI(t2)HI(t1)

=
∫ t

t0
dt1

∫ t1

t0
dt2HI(t1)HI(t2) +

∫ t

t0
dt2

∫ t

t2
dt1HI(t1)HI(t2)

=
∫ t

t0
dt1

∫ t1

t0
dt2HI(t1)HI(t2) +

∫ t

t0
dt1

∫ t1

t0
dt2HI(t1)HI(t2)

= 2
∫ t

t0
dt1

∫ t1

t0
dt2HI(t1)HI(t2).

We have used the definition of the θ-function that introduces the following changes in the
dt2 integration

t1 − t2 > 0 t2 ∈ [t0, t1] −→
∫ t1

t0
dt2 t2 − t1 > 0 t2 ∈ [t1, t] −→

∫ t

t1
dt2 . (6.22)

In the second term, we have exchanged the dummy variables t1, t2, and permuted the dt2,
dt1 hierarchy of integration according to the rule of Figure 6.1 .

t ttt

t

t

t

 1

22

t

 1

0

0t

t

t0

t0

t 2

 1t=

Figure 6.1: Hierarchy of dt2, dt1 integrations

The Dyson series is a perturbative series whose convergence cannot be demonstrated.
In QED, we observe that, because of the smallness of the coupling constant3 α, called
fine structure constant, the first terms of the series already show good agreement with
experimental results. One generally says that the series is asymptotically diverging. The
next important task is to evaluate the chronological product T in the Dyson expansion.

3The strength of the field interaction is characterized by a parameter called coupling constant. This
parameter is very small in QED (α ≈ 1/137), but is high for strong interaction (g ≈ 1). The validity of
the perturbative treatment is obviously depending on the size of this parameter.

56



6.3 Contractions and Wick’s Theorem

The Dyson expansion is a lengthy expression that can be calculated term by term. How-
ever, each term contains the chronological product T [A1 · · ·An] whose evaluation is non-
trivial. This difficulty can be partially surmounted by means of the Wick’s theorem. Let
us first give two definitions :

• The normal product of n operators

:A1 · · ·An: (6.23)

means that all creation operators stand to the left of all annihilation operators. It
has already been defined in (1.62). Remember that an odd number of interchanges
of pairs of fermionic operators changes the sign.

• The contraction of two operators taken at different space-time points is defined
by the vacuum-expectation value of the chronological product

A1A2 = 〈0|T [A1A2]|0〉 . (6.24)

With these two definitions of normal ordering and contraction, the chronological product
can be nicely expanded by means of the Wick’s theorem.

Wick’s theorem

T [A1 · · ·An] = :A1 · · ·An:

+ :A1A2A3A4 · · ·An:+ :A1A2A3A4 · · ·An:

+ all simple contractions

+ :A1A2A3A4 · · ·An:+ :A1A2A3A4 · · ·An: (6.25)

+ all double contractions

+ all other possible kinds of contractions.

The proof can be done by induction (see textbooks).

We easily verify this theorem for two scalar fields. A real scalar field

φ(x) =
∫

d3p

(2π)32ǫp

[

a(p)e−ipx + a†(p)eipx
]

(6.26)

can be separated into two terms φ(x) = φ−(x) + φ+(x) : one with negative frequency
containing only annihilation operators, the other with positive frequency containing only
creation operators. Thus, for a scalar field taken at any two space-time points φ1 = φ(x1)
and φ2 = φ(x2) with positive and negative frequency components φ−

i and φ+
i i = 1, 2, we

can carry out the expansion

φ1φ2 = (φ−
1 + φ+

1 )(φ−
2 + φ+

2 )

= φ−
1 φ

−
2 + φ+

1 φ
+
2 + φ+

1 φ
−
2 + φ−

1 φ
+
2 , (6.27)
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and write the normal product expression

:φ1φ2: = φ−
1 φ

−
2 + φ+

1 φ
+
2 + φ+

1 φ
−
2 + φ+

2 φ
−
1

= φ1φ2 −
[

φ−
1 , φ

+
2

]

. (6.28)

The product of the scalar fields taken at two different points then reads

φ1φ2 =:φ1φ2: +
[

φ−
1 , φ

+
2

]

(6.29)

and the contraction of the two operators can thus be written

φ1φ2 = 〈0|T [φ1φ2]|0〉 = 〈0|φ1φ2|0〉θ(t1 − t2) + 〈0|φ2φ1|0〉θ(t2 − t1)
= 〈0|

[

φ−
1 , φ

+
2

]

|0〉θ(t1 − t2) + 〈0|
[

φ−
2 , φ

+
1

]

|0〉θ(t2 − t1)
=

[

φ−
1 , φ

+
2

]

θ(t1 − t2) +
[

φ−
2 , φ

+
1

]

θ(t2 − t1) , (6.30)

where we have used the fact that the commutator4 is a c-number (check it!) and that
the vacuum is normalized 〈0|0〉 = 1. Then, with the product (6.29) and the contraction
(6.30), it is straightforward to calculate the chronological product of the scalar fields φ1

and φ2 and arrive at the Wick’s expansion

T [φ1φ2] = φ1φ2θ(t1 − t2) + φ2φ1θ(t2 − t1)
=

(

:φ1φ2:+
[

φ−
1 , φ

+
2

])

θ(t1 − t2) +
(

:φ2φ1:+
[

φ−
2 , φ

+
1

])

θ(t2 − t1)

= :φ1φ2:+ φ1φ2 , (6.31)

where in the last line we have used the property :φ1φ2: = :φ2φ1: . For fermion fields, we
proceed in the same way (homework). However, because of the anticommuting nature of
the fermion field, we must define the normal product with a minus sign

:ψaψb: = ψ−
a ψ

−
b +ψ+

a ψ
+
b +ψ+

a ψ
−
b −ψ+

b ψ
−
a = ψaψb−{ψ−

a , ψ
+
b } a, b = 1, · · · , 4 . (6.32)

Finally, it is interesting to calculate the vacuum-expectation value of the product of
the scalar field φ(x) with the creation operator a†(k). It is easy to verify (do it !), that
we obtain an ingoing plane wave

〈0|φ(x)a†(k)|0〉 = e−ikx. (6.33)

The outgoing plane wave is given by

〈0|a(k)φ(x)|0〉 = e+ikx. (6.34)

Contractions are very important quantities. They are related to non-equal time commuta-
tors or anticommutators. In the next chapter we will discuss their relation with Feynman
propagators we have already met earlier, for instance in (3.21).

4Speaking generaly, we can show that the commutator [φ(x1), φ(x2)] is non-equal zero for time-like
separation (x1 − x2)

2 > 0. It nevertheless vanishes at equal time, where (x1 − x2)
2 = −(r1 − r1)

2 < 0.
Thus, owing to the Lorentz invariance of our fields, it is also zero for space-like separation (x1− x2)

2 < 0
as required by a causal theory.
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6.4 Propagators

The Wick theorem allows to express the chronological product in terms of normal products
and contractions. Among the various possible contractions, the propagators play a central
role. In the previous chapters, these quantities have already been defined as Green’s
functions relative to a given operator and have been subject to a particular choice of
integration path. Here, they are defined by the contraction of two fields of the same
kind, taken at different space-time points, and multiplied by a conventional (−i) factor.
The calculations below will show the equivalence of these two definitions. Moreover, the
chronological product that enters the definition of the contraction will justify the choice
of the causal paths depicted in Figures 3.1 and 5.1.

Boson propagator

∆F (x− y) = −i φ(x)φ(y) = −i〈0|T [φ(x)φ(y)]|0〉
= −i

[

θ(x0 − y0)〈0|φ(x)φ(y)|0〉+ θ(y0 − x0)〈0|φ(y)φ(x)|0〉
]

The first term gives

〈0|φ(x)φ(y)|0〉 =
∫

d3p

(2π)32ǫp

∫

d3p′

(2π)32ǫp′

〈0|[a(p)e−ipx + a†(p)eipx]

[a(p′)e−ip′y + a†(p′)eip′y]|0〉

=
∫

d3p

(2π)32ǫp

∫

d3p′

(2π)32ǫp′

〈0|a(p)a†(p′)|0〉 e−ipx+ip′y

=
∫

d3p

(2π)32ǫp

∫

d3p′

(2π)32ǫp′

(2π)32ǫpδ(p− p′)e−ipx+ip′y

=
∫ d3p

(2π)32ǫp
e−ip(x−y),

and the second leads to a similar expression with a positive exponent. The sum of these
two terms, each one multiplied by the step function, corresponds to the result already
obtained in (3.22) for the Green’s function GF (x − y). Thus, looking at the expression
(3.21), the covariant form of the boson propagator can immediately be written

∆F (x− y) =
∫

d4p

(2π)4

eip(x−y)

p2 −m2 + iǫ
. (6.35)

Photon propagator

Dµν
F (x− y) = −i Aµ(x)Aν(y) = −i〈0|T [Aµ(x)Aν(y)]|0〉

= −i
[

θ(x0 − y0)〈0|Aµ(x)Aν(y)|0〉+ θ(y0 − x0)〈0|Aν(y)Aµ(x)|0〉
]

As for the covariant quantization of the electromagnetic field, the calculation of the co-
variant photon propagator brings out some difficulties. Here, we simply give the result

Dµν
F (x− y) =

∫ d4k

(2π)4

(−gµν)

k2 + iǫ
e−ik(x−y). (6.36)
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Fermion propagator

SF
ab(x− y) := −i ψa(x)ψb(y) := −i〈0|T [ψa(x)ψb(y)]|0〉

= −i
[

θ(x0 − y0)〈0|ψa(x)ψb(y)|0〉 − θ(y0 − x0)〈0|ψb(y)ψa(x)|0〉
]

The minus sign between the two terms comes from the definition of the chronological
product for anticommuting fermion fields. Moreover, the spinor indices a, b = 1, · · · , 4
must be explicitly written in order to get rid of the non-commutativity of the spinor
matrices. The calculation is performed (homework) as for the boson propagator and by
using the closure relations (5.41). It leads to the result (5.84) which is equivalent to the
covariant fermion propagator

SF (x− y) =
∫

d4p

(2π)4

(/p +m)

p2 −m2 + iǫ
e−ip(x−y). (6.37)

We now have most of the technical means of QFT. We could apply them to various
domains of particle physics like QED or QCD (Quantum ChromoDynamics). Because of
lack of time, only one simple example of QED will be addressed in the next chapter.
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Chapter 7

Feynman Diagrams in QED

One should now consider the various quantum fields, define their mutual interactions and
carry out a systematic analysis of the terms of the Dyson expansion. But, the setting up
of this program is a huge task that falls outside of the scope of this introductory course.
It is also the case for a thorough discussion of Feynman diagrams. However, in the light
of an example taken from QED, we will show how to use the Dyson series and the Wick’s
theorem, and also how to interpret the resulting formulas as Feynman diagrams.

7.1 Dyson Expansion Applied to QED : an Example

QED provides very accurate results. For instance, the calculation of the anomalous mag-
netic moment of the electron (up to 891 Feynman diagrams) combined with the exper-
imental measurement of the g-factor yields the most precise value of the fine structure
constant α, namely 1/α = 137, 035999710(96). More precisely, experimental and theoret-
ical values of the g-factor are

gexp = 2(1 + 1159652209(31)× 10−12)

gtheo = 2(1 + 1159652478(144)× 10−12). (7.1)

The first order correction supplied by one-loop diagrams already gives a good value

g = 2(1 +
α

2π
).

Of course, a systematic approach of these calculations cannot be undertaken in this short
introductory lecture. Nevertheless, the analysis of at least one example of one-loop diagram
may be helpful in the understanding of the Feynman diagram technique.

The minimal coupling between fermion field ψ (electrons) and electromagnetic field
Aµ (photons) can be described by the interaction Hamiltonian

HI(t) =
∫

d3r HI

=
∫

d3r jµ(x)Aµ(x)

=
∫

d3r
[

−eψ(x)γµψ(x)Aµ(x)
]

. (7.2)
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Then, the first two terms of the Dyson expansion take the explicit form

S = S(1) + S(2) + · · ·
= −i

∫

dt1HI(t1)−
1

2

∫

dt1

∫

dt2 T [HI(t1)HI(t2)] + · · ·

= ie
∫

d4x (ψ/Aψ)x −
e2

2

∫

d4x1

∫

d4x2 T
[

(ψ/Aψ)x1
(ψ/Aψ)x2

]

+ · · · (7.3)

A complete Wick’s expansion of the above expression is already a large task. Fortunately,
the classification of the various terms of the Wick’s theorem can be facilitated by the use
of Feynman diagrams. We shall give hereinafter a mainly qualitative discussion of the role
of these diagrams. No systematic analysis of connected or disconnected diagrams will be
performed. With the S(1) term, the formula (5.90) can be recovered, but here for field
operators. The expectation value of S(1) between ingoing and outgoing electron-states
|p, s〉+ = b†s|0〉 leads to the matrix element

+〈p, s|S(1)|p′, s′〉+ = ie
∫

d4x〈0|bs(p)(ψ/Aψ)xb
†
s′(p

′)|0〉, (7.4)

whose evaluation (homework) gives

+〈p, s|S(1)|p′, s′〉+ = −(2π)4δ(p− p′) us(p)(−ieγµ)us′(p
′)Aµ(p− p′). (7.5)

The next step consists of applying the Wick’s theorem to the S(2) term. Among the various
possible simple, double and triple contractions of non-equal time operators, we consider,
for instance, one typical double contraction called vacuum-polarization

S
(2)
pol =

e2

2

∫

d4x1

∫

d4x2 :(ψ/Aψ)x1
(ψ/Aψ)x2

: . (7.6)

It can be written in terms of spinor components

S
(2)
pol =

e2

2

∫

d4x1

∫

d4x2 ψa′(x1)ψb(x2)ψa(x1)ψb′(x2)γ
µ
aa′γν

bb′ :Aµ(x1)Aµ(x2):

= (−1)
e2

2

∫

d4x1

∫

d4x2 γ
µ
aa′ψa′(x1)ψb(x2)γ

ν
bb′ψb′(x2)ψa(x1) :Aµ(x1)Aµ(x2): ,

where the minus sign comes from the odd number of anticommutations of fermion fields.
The Einstein summation convention is assumed for repeated indices a, b, a′, b′. The sum
over spinor indices can be replaced by the trace1 Tr and gives

S
(2)
pol = −e

2

2

∫

d4x1

∫

d4x2 Tr
[

γµψ(x1)ψ(x2)γ
νψ(x2)ψ(x1)

]

:Aµ(x1)Aν(x2):

= −e
2

2

∫

d4x1

∫

d4x2 Tr
[

γµiSF (x1 − x2)γ
νiSF (x2 − x1)

]

:Aµ(x1)Aν(x2): . (7.7)

1The relation between the sum over spinor components and the trace can be seen by a direct application
of the row-column multiplication rule for matrices :

∑

a

∑

a′bb′

γµ
aa′Sa′bγ

ν
bb′Sb′a =

∑

a

[γµSγνS]aa = Tr[γµSγνS].
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For the calculation of the trace, the properties (5.99) are useful. At first sight, the above
formula seems relatively complicated. However, the different factors entering its compo-
sition show a certain symmetry with respect to the space-time points. As we will see
in the next section, this symmetry can be used for interpreting them as particles and
interactions.

7.2 Feynman Diagrams

The integrals (7.7) written in x-configuration could be graphically represented. However,
it is more usual to implement the correspondence between formula and diagram in p-space
representation. With the fermion propagator (6.37), the expression (7.7) becomes

S
(2)
pol = −e

2

2

∫

d4x1

∫

d4x2 Tr
[

γµiSF (x1 − x2)γ
νiSF (x2 − x1)

]

:Aµ(x1)Aµ(x2):

= −e
2

2

∫

d4x1

∫

d4x2 Tr

[

γµ
∫

d4p

(2π)4

i(/p +m)

p2 −m2 + iǫ
e−ip(x1−x2)

γν
∫ d4p′

(2π)4

i(/p′ +m)

p′2 −m2 + iǫ
e−ip′(x2−x1)

]

:Aµ(x1)Aν(x2): . (7.8)

The fields Aµ(x) are not contracted. We contract them with ingoing and outgoing photons:

a†n′(k′)|0〉, 〈0|an(k) n, n′ = 1, 2. For example an ingoing photon gives rise to the expression

〈0|Aν(x2)a
†
n′(k′)|0〉 = 〈0|Aν(x2)a

†
n′(k′)|0〉

=
∫ d3p

(2π)32ωp

2
∑

m=1

em
ν (p)e−ipx2〈0|am(p)a†n′(k′)|0〉

=
∫

d3p

(2π)32ωp

e−ipx2

2
∑

m=1

em
ν (p)(2π)32ωpδ(p− k′)δmn′

= en′

ν (k′)e−ik′x2 , (7.9)

and also for an outgoing photon.

〈0|an(k)Aµ(x1)|0〉 = en
µ(k)eikx1. (7.10)

The space-time integrals in (7.8) are easily calculated. One first brings together the ex-
ponential functions appearing in (7.8) and also in the ingoing and outgoing photons

ei(−p+p′+k)x1 ei(p−p′−k′)x2.

Then, we see that the d4x1 and d4x2 integrations provide two δ(4)(p− p′) functions. One
of them absorbs the d4p′ integration and leads to the expression

〈S(2)
pol〉 =

1

2
δ(4)(k − k′)

en
µ(k)

∫

d4p Tr

[

(−ieγµ)
i(/p +m)

p2 −m2 + iǫ
(−ieγν)

i(/p− /k +m)

(p− k)2 −m2 + iǫ

]

en′

ν (k′).

(7.11)

The other δ(4)(k − k′) function represents the energy-momentum conservation. Integral
and trace stand respectively for the sum over all internal momenta and spins. The nice
arrangement of the different factors suggests a graphical representation.
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To each factor of the formula (7.11), it is possible to assign a graphical symbol in the
following way :

i(/p +m)

p2 −m2
en

µ(k) − ieγµ
∫

d4p Tr

continuous line wavy line point (vertex) loop

Figure 7.1: Graphical symbols

As a first simple example, one could give the graphical transcription of formula (7.5). In
this case, the spinors will be represented by straight lines and the electromagnetic field
by a wavy line ending by a cross as depicted in Figure 7.2 .

p

p’

−p p’

Figure 7.2: External electromagnetic field

From the Feynman rules given in Figure 7.1, it is easy to identify the formula (7.11)
with the vacuum-polarization diagram depicted in Figure 7.3. Reciprocally, for a given
graph, the corresponding formula can be directly written.

p−k

p

kk

Figure 7.3: Vacuum-polarization diagram

The diagram of Figure 7.3 provides a one-loop correction to the photon propagator. How-
ever, it appears that the corresponding integral (7.11) is diverging in the following way

∫ d4p

p2
∼

∫ ∞

0
p dp . (7.12)

These kind of ultraviolet divergences are common to all terms of the perturbation
expansion. A general procedure, called renormalization, has been developped in order
to overcome this problem of divergences. It consists, first to reguralize the integral, for
instance with a momentum cut-off Λ, then to extract a finite part, and finally to absorb
the remaining infinity into a re-definition of the measured charge (charge renormalization).
But all that is another story.
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Chapter 8

Appendix : Exercices

1. The periodic real scalar field φ(x, t) defined on the interval x ∈ [0, ℓ] is expanded in
a Fourier series

φ(x, t) =
1√
ℓ

∑

k

φk(t)e
ikx k =

2πn

ℓ
, n ∈ ZZ .

Verify the following relations

a) 1
ℓ

∫ ℓ
0 dx e

i(k−k′)x = δkk′ orthonormality

b)
∫ ℓ
0 φ(x, t)2dx =

∑

k φk(t)φ−k(t) Parseval’s relation

c) 1
ℓ

∑

k e
ik(x−x′) = δ(x− x′) closure relation .

2. The Hamiltonian of a vibrating string of length ℓ is given by the integral

H =
1

2

∫ ℓ

0
dx
[

π2 + v2 (∂xφ)2
]

with π = φ̇. By using the Fourier expansion of the field

φ(x, t) =
1√
ℓ

∑

k

[

Ak e
−i(ωkt−kx) + A∗

k e
+i(ωkt−kx)

]

,

where ωk = v|k|, deduce the Hamiltonian expression

H =
∑

k

ω2
k(A

∗
kAk + AkA

∗
k) .

3. Show that the scalar quantum field φ(x, t) and its conjugate field π(x, t) given in
section 1.3 obey the equal-time commutation relations

[φ(x, t), π(x′, t)] = ih̄δ(x− x′)

[φ(x, t) , φ(x′, t)] = 0 = [π(x, t) , π(x′, t)] .

i



4. Review the canonical quantization scheme of the single harmonic oscillator and list
the main ideas.

5. Show that the Lagrangian density

L =
1

2
[(∂µΦ)2 −m2Φ]

yields the Klein-Gordon equation

[2−m2]Φ = 0 .

6. From the definition of the differential, convince yourself that the functional deriva-
tive of the functional

F [f ] =
∫

F(f(x)) dx

is given by the partial derivative of the density function F

δF

δf
=
∂F
∂f

.

7. Consider the scalar field φ′(x′) = φ(x) and the infinitesimal Lorentz matrix

Λµ
ν = δµ

ν + ǫµν +O(ǫ2) Λ ∈ {Λ/ΛTgΛ = g} .

a) Show that ǫµν = −ǫνµ .

b) Verify that the Klein-Gordon action

S =
∫

d4x
[

(∂µφ)2 −m2φ2
]

is invariant under the infinitesimal Lorentz transformation

x′µ = (δµ
ν + ǫµν)x

ν .

c) For any Lorentz-invariant action S =
∫

d4x L(φ, ∂µφ), deduce the conserved
current

Θµ =
ǫαν

2
[xαT µν − xνT µα]

where

T µν =

[

∂L
∂(∂µφ)

∂αφ− δµ
αL
]

gαν .

d) Identify the conserved charge Qjk j, k = 1, 2, 3.
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8. Show that the action
S =

∫

Ω
d4x L(φ, ∂µφ)

is invariant under the local phase transformation φ′(x) = eiα(x)φ(x), where we as-
sume the boundary condition α(x)φ(x)|∂Ω = 0.

9. From the definition of the Hamiltonian

H [φ, π] =
∫

V
d3r

[

πφ̇−L(φ, ∂µφ, t)
]

and by considering the variation (differential)

δH =
∫

V
d3r

[

δH

δφ
hφ +

δH

δπ
hπ

]

, (8.1)

where the condition hφ(r, t)|∂V = 0 is assumed, deduce the canonical equations

φ̇ =
δH

δπ
π̇ = −δH

δφ
.

10. Schow that the equal-time canonical commutation relations

[φ(r, t), π(r′, t)] = iδ(r − r′)

[φ(r, t), φ(r′, t)] = 0 = [π(r, t), π(r′, t)]

induce the following relations for the creation and annihilation operators
[

a(p), a†(p′)
]

= (2π)32ǫpδ(p− p′)

[a(p), a(p′)] = 0 =
[

a†(p), a†(p′)
]

.

11. A three-boson state is given by the ket |p1,p2,p3〉 = a†(p1)a
†(p2)a

†(p3)|0〉.

a) Verify the orthogonality relation

〈p′
1,p

′
2,p

′
3|p,p2,p3〉 =

3
∑

i=1

(2π)32ǫp′

i
δ(p− p′

i)〈p′
1, p̂

′
i,p

′
3|p2,p3〉 ,

where the momentum p̂′
i must be ignored.

b) Deduce the action of the annihilation operator on this three-boson state

a(p)|p1,p2,p3〉 =
3
∑

i=1

(2π)32ǫpi
δ(p− pi)|p1, p̂i,p3〉 .
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12. The Hamiltonian of the real free scalar field is given by

H =
1

2

∫

d3r
(

π2 + (∇φ)2 +m2φ2
)

.

a) Express it in terms of creation and annihilation operators

H =
1

2

∫

d3k

(2π)3

1

2

[

a†(k)a(k) + a(k)a†(k)
]

.

b) Verify that the state |p1, · · · ,pi, · · · ,pn〉 is an eigenvector of the normal-ordered
Hamiltonian :H : , with eigenvalue E =

∑n
i=1 ǫpi

.

13. The Lagrangian density of the free electromagnetic field is given by the expression

L = −1

4
F µνFµν

where F µν = ∂µAν − ∂νAµ is the tensor field.

a) Verify that

L =
1

2
(E2 −B2) H =

1

2

∫

d3r(E2 + B2) .

b) Derive the Maxwell’s equations for a free field

∂µF
µν = 0 .

14. Consider the electromagnetic field in free space (jµ = 0). Show that, for a given Aµ,
there exists a gauge transformation A′

µ = Aµ + ∂µχ such that the Coulomb gauge
conditions ∇ ·A′ = 0 , A′

0 = 0 are satisfied.

15. The quantization of the electromagnetic field in Coulomb gauge imposes a new
commutation relation

[

πj(r, t), Aj′(r
′, t)

]

= iδtr
jj′(r− r′) ,

where

πj = −Ȧj and δtr
jj′(r− r′) =

∫ d3p

(2π)3
eip·(r−r′)

[

δjj′ −
pjpj′

p2

]

.

Show that this relation induces the commutator
[

an(k), a†m(p)
]

= (2π)32ωkδ(k− p)δnm ωk = |k| .

Hint : Express the operators an(k) and a†m(k) in terms of Aj(x) and πj(x).
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16. By using the Coulomb gauge conditions ∇·A = 0,Φ = 0, show that the free photon
Hamiltonian takes the form

:H : =
∫

d3k

(2π)32ωk

ωk

2
∑

n=1

a†n(k)an(k) ωk = |k| .

17. Verify the commutation relation

[r, Hat] =
i

m
p

where r is the position operator, p the momentum operator andHat = p2/2m+V (r)
the atomic Hamiltonian.

18. The general form of the Dirac equation
[

∂t + α · ∇+ iKβ
]

ψ(x) = 0 K ∈ IR

must satisfy the energy-momentum relation ǫ2p = p2 + m2. From this requirement,
deduce the value of K and the properties of the matrices β and α

β2 = I

αjβ + βαj = 0

αjαk + αkαj = 2δjkI .

19. Derive the Dirac equation from the Lagrangian density

L =
i

2

[

ψ(x)/∂ψ(x)− ψ(x)
←−
/∂ ψ(x)

]

−mψ(x)ψ(x) (8.2)

by considering the field components ψα(x) and ψα(x) α = 1, · · · , 4 as independent
variables.

20. The free electron probability current is given by the expression

j = ψγψ

where

ψ =
1

(2π)3/2

us(p)√
2ǫp

e−ipx.

Verify that

j =
1

(2π)3

p

ǫp
.
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21. Verify the following properties

σ2
1 = σ2

2 = σ2
3 = 1

σ1σ2 = iσ3 σ2σ3 = iσ1 σ3σ1 = iσ2 .

of the Pauli matrices σj , j = 1, 2, 3.

22. Consider the Dirac spinors

us(p) =
√

ǫp +m







ϕs

σ·p
ǫp+m

ϕs





 vs(p) =
√

ǫp +m







σ·p
ǫp+m

χs

χs





 s = 1, 2.

a) Verify that they satisfy the following orthonormalization conditions

u†s(p)us′(p) = 2ǫpδss′ = v†s(p)vs′(p)

ūs(p)us′(p) = 2mδss′ v̄s(p)vs′(p) = −2mδss′

u†s(p)vs′(−p) = 0 .

b) Show that the closure relations are given by

2
∑

s=1

us(p)ūs(p) = (/p +m)
2
∑

s=1

vs(p)v̄s(p) = (/p−m).

23. a) Show that the Dirac spin operator Σ has the properties

α1Σ2 = iα3 α2Σ3 = iα1 α3Σ1 = iα2

where α = γ5Σ.

b) From the results given in the course and by using a) show that

α · h̄
i
∇ = α · er

[

h̄

i

∂

∂r
+

2i

h̄

(L · S)

r

]

.

24. For the relativistic hydrogen atom, verify that the set
{

H , J2 , Jz , S2
}

forms a complete set of commuting observables.
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25. a) Verify the commutator
[

Jk , σ · r
]

= 0 k = 1, 2, 3.

b) By using a), show that

(σ · r̂) Yjm(j ∓ 1
2
|ϑ, ϕ) = −Yjm(j ± 1

2
|ϑ, ϕ) .

26. Following the calculations of section 5.2 b) of the lecture notes, show that the integral
equation for the probability amplitude is given by

〈ψus′
|ψ〉 = 〈ψus′

|ψ0〉+ ie
∫

d4x′ ψus′
(x′) /A(x′) ψ(x′).

27. Perform the dp0 integration of the Feynman propagator given by

SF (x− x′) =
∫

d4p

(2π)4

(/p +m))

(p2 −m2 + iǫ)
e−ip(x−x′) .

28. Starting from the Coulomb scattering amplitude given in the course

S
(1)
fi = −i Zα

(2π)2
√

4ǫpf
ǫpf

4πδ(ǫpf
− ǫpi

) ūsf
(pf)

γ0

|q|2 usi
(pi)

with q = pf − pi, calculate the Mott cross-section

dσ

dΩ
=

(

Zα

2ǫp

)2
[

1− β2 sin2(ϑ/2)
]

β4 sin4(ϑ/2)
,

where β = v/c, ǫp =
√

p2 +m2 and ϑ is the angle between pi and pf .

Remark that, at the limit β ≪ 1, we obtain the Rutherford cross-section.

29. Express the fermionic Hamiltonian

H =
i

2

∫

d3r [ψ† ∂0ψ − ∂0ψ
† ψ]

in terms of creation and annihilation operators

H =
1

2

∫ d3p

(2π)3

[

b†s(p)bs(p)− ds(p)d†s(p)
]

.
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30. Show that the the anticommution relation

{ψa(r, t), πb(r
′, t)} = iδab δ(r− r′)

for fermion fields implies the relations
{

bs(p), b†s′(p
′)
}

= (2π)32ǫpδss′δ(p−p′)
{

ds(p), d†s′(p
′)
}

= (2π)32ǫpδss′δ(p−p′) .

31. Express the charge operator

Q = −e
∫

d3r :j0(x):

in terms of creation and anihilation operators

Q = −e
2
∑

s=1

∫

d3p

(2π)32ǫp

[

b†s(p)bs(p)− d†s(p)ds(p)
]

.

32. Consider the time-independent Hamiltonian H = H0 + H̄I where H0 is the free part
and H̄I the interacting part. For a Schrödinger state vector |ψS(t)〉, show that, in
the interaction picture, the ket state

|ψ(t)〉 = eiH0t|ψS(t)〉

obeys the evolution equation

i
d

dt
|ψ(t)〉 = HI(t)|ψ(t)〉

where HI(t) = eiH0tH̄Ie
−iH0t.

33. For two fermion fields ψ1 , ψ2, verify the Wick’s theorem

T [ψ1ψ2] =:ψ1ψ2: + ψ1ψ2 .

34. a) Given the matrix γ5 = γ0γ1γ2γ3, verify the following properties

γµγ5 = −γ5γµ (γ5)2 = I.

b) Given the four-vectors aµ, bµ, cµ, dµ, derive the following trace properties :

1) Tr[ odd number of γµ] = 0

2) Tr[/a/b] = 4aµbµ = 4ab

3) Tr[/a/b/c/d] = 4[(ab)(cd) + (ad)(bc)− (ac)(bd)].

viii



35. We consider the gauge field equation 2Aµ(x) = −jµ(x), where the proton current
is given by jµ = eψ̄p

fγ
µψp

i . Show that the first-order approximation of the electron-
proton interaction is given by the amplitude

S
(1)
fi = − e2

(2π)2
δ(Pf − Pi + pf − pi)

1
√

16 ǫpf
ǫpi
ǫPf

ǫPi

× uf(pf )γ
µui(pi)

−gµν

(Pf − Pi)2 + iε
uf (Pf)γ

νui(Pi)

where p and P are respectively the electron and proton four-momenta.

36. For a scalar field φ(x), calculate the following two contractions

φ(x)a†(k) a(k)φ(x) .

37. Calculate the free fermion propagator

SF
ab(x− y) = −i〈0|T [ψa(x)ψb(y)]|0〉

and arrive at the expression

SF
ab(x− y) =

∫

d4p

(2π)4

(/p +m)

p2 −m2 + iǫ
e−ip(x−y) .
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