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Thermal Suppression of Strong Pinning
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We study vortex pinning in layered type-Il superconductors in the presence of uncorrelated
disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we
describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance
and analyze the evolution in temperature of two distinct nonlinear features in the current-voltage
characteristic. We show how the combination of layering and electromagnetic interactions leads to
a sharp jump in the critical current for the onset of glassy response as a function of temperature.
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PACS numbers: 74.60.Ge, 74.60.Jg

Quenched disorder in strongly layered superconiilt modulus leads to a pronounced jump in the critical
ductors, such as the Bi-based hifjh-compounds or current densityj, with increasing temperature. The main
the organic BEDT-TTF-based [bis(ethylenedithiolo)- results of our analysis are summarized in the pinning
tetrathiafulvalene] materials, naturally leads to the phediagram of Fig. 2 which shows the various pinning
nomenon of strong vortex pinning. With the magneticregimes present in the low-field region below the field
field directed perpendicular to the layers the vortex linesB, = ®,/A?, where A is the planar London penetration
divide up into loosely coupled strings of “pancake” depth and®, denotes the flux unit. In a forthcoming
vortices [1]. At low fields, the absence of interactionspublication [9] we will map out the entire pinning diagram
between the pancake vortices allows for their free accomand generalize our analysis to include finite Josephson
modation to the pinning potential, thus leading to strongcoupling.
pinning of individual pancake vortices. Thisisin contrast We begin our study with the low-field—low-
to the weak collective pinning situation [2], where the dis-temperature limit and consider an individual vortex
order potential competes with elastic forces, due to either
tilt or shear energies. Whereas a detailed understanding
of the weak-pinning phenomenology has been developed
over the past decade [3], not much progress has been
made regarding the strong-pinning situation.

Recent experimental and theoretical interest con-
centrates on the low-field properties of vortex matter \4
in strongly layered materials such as,8ihCaCuyOg
(BiSCCO) [4-8], with particular emphasis on the effects
of thermal fluctuations, quenched disorder, and their
mutual interplay. In this Letter, we present a detailed
analysis of the phenomenon of strong vortex pinning in
layered type-Il superconductors and its crossover to the
weak-pinning situation due to thermal fluctuations. We
assume quenched pointlike disorder and concentrate driG. 1. Current-voltage characteristic of layered superconduc-
the decoupled limit where electromagnetic interactiond®rs in the pancake-vortex pinning regini® < 7,.) exhibit-

Ing a two-step behavior. Above the critical current density

between pancake vortices determine the behavior of vortejxc we find the usual flux-flow (FF) regime with resistivity

matter. We discuss the presence of two steplike feature,gFF_ As the currentj drops belowj,., pancake vortices are
in the current-voltage characteristic (CVC) and determingrapped into potential wells of deptt,. and the system en-
the evolution in temperature of the two correspondingiers a second Ohmic regime with a reduced resistivity due to
critical current densitieg,.(T) and j,(T) describing the thermally activated flux flow of individual pancake vortices,

e N i . TAFF ~ prr EXP(—UZ./T?). At j, < j,. the motion of pan-
onset of strong pinning and of glassiness; see Fig. 1. T@ake vortices is inhit[;ited by elastic forces, resulting in a sharp

account for thermal fluctuations smoothing the disordegirop of the voltage (glassy response). Inset: temperature de-
potential in the strong-pinning regime we introduce thependence of the two-step features in the CVC. The critical
new concept ofvariable-rangethermal smoothing. We current densityj,. remains constant up t6 = U,., where the

show how the thermal depinning of vortices proceeds in %orre_sponding step in the CVC disappears. The critical current
. . .. _density for glassy respongg decreases with temperature and,

sequence of steps until th_e usual weak collective piInnIngy 7 — Ty, smoothly goes over to the critical current density

situation is recovered at high temperatures. Furthermorg, determined by weak collective pinning theory. Note that

we predict that the strong dispersion in the electromagnetit,. = U,. as shown in the text.
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Introducing the energy scalg.,, = sod£2/A%, we arrive
at the vortex free energy per unit length,

Eom A2 u? Fo(u) |d
)=+ —.
d In<1 L? + u2> &? d L
)

Minimizing f with respect ta: and L provides us with the
optimal pinning state. For strong pinning the minimum is
realized by the OD pancake-vortex configuratian= d)

I and, minimizing Eq. (3) with respect o, we obtain the
et te Uy optimal search area [8]
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FIG. 2. B-T-pinning diagram of a layered superconductor 5 > Up U, -1/2 A2 En\T!

with decoupled layers (log scales= T/T., b = B/B.,; By = u, = § £ [In<E )} [|n<§ U ﬂ . @)
®,/A%; parameters for BISCCOY = 1800 A, ¢ =25 A, d = em em P

15 A, T. = 90 K). Results for the various pinning regimes The activation barrier for pancake-vortex motion is
are shown for moderate pinning with, = U, = 10 K. The

strong-pinning region at low temperaturés< T, is divided Uy = —Folu,) = U,| In Up /2 (5)
into two parts: AtT < T, thermal effects are irrelevant [(O- pe 0i%e p )

0)D regime], while atT, < T < T, variable-range thermal . . L
smoothing takes place [(0-1)D and (0-3)D regimes]. TheComparing the Lorentz forcg(®o/c)d with the pinning
dashed thick line af' = T, indicates the jump in the collective force U,./¢, we find the pancake critical current density,
pinning length L, and the critical current density,. At 12

temperaturesT > T, and low inductions vortex segments =~ lIn Up (6)
of length L, > A are pinned collectively (1D regime). The Jpe = Jp Eem ’

remaining area shows the 3D (vortex-bundle) pinning regime.
g ( )P gred Here, j, = jo(U,/&0d), and jo = ceo/ P, denotes the

depairing current density. In the weak-pinning situation

line oriented perpendicular to the layers. The presence dfp < Eem We have u, = ¢, Fy = —U,, and it is
point disorder leads to a distortion of the vortex line with €nergetically more favorable for the system to settle in
a typical relative displacement between neighboring the 1D pinning regime: Minimizingf(u = ¢, L) with
pancake vortices. The optimal pinning state is determinegespect toL, we find L. = A(A/d)'*(Eem/U,)*? > A.

by the competition between the elastic and the pinning'he parametetV, can be estimated from experiments
energies. The deformation of the vortex line on a lengtimeasuring the critical current density at laiv and 7

L costs an energy Fei(u,L) = &;(u,k, = 1/L)u?/L. and is typically of the order of 10 K (BiSCCO). In

For purely electromagnetic interaction (uncoupled |ayers):omp{:1rison, the electromagnetic eIa;tic energy, ~
the elasticitye; takes the strongly dispersive forsa(u < 0.2 Kis much smaller. From these estimates we conclude

Ak, = (80/2A2k§) In[1 + A2kz2/(1 + u2kz2)], with the that we usually encounter a strong-pinning situation with
line energysy = (®y/47A)2. Here, we have interpo- U, > Eep in strongly layered highF. material.

lated between the formulas valid fork, > 1 [1] and The strong pinning of individual pancake vortices into
uk, < 1[3]. On the other hand, adjusting to the disorderpotential wells of depttU,. leads to a sharp drop in the
potential, a vortex segment of lengthgainsthe pinning ~ current-voltage characteristic (CVC) at the critical current
energy Epin(u, L) = |Eo(u)| /L/d, whered is the layer densityj,; see Fig. 1. However, at finite_ temperatures
separation andEy(u) is the deepest minimum a pancake the CVC does not drop to zero, as the individual pancake
vortex can settle in within the are@®. This energy is Vortices can overcome their finite pinning barriers by
determined by the condition? ff‘)g(fE)df ~ 1. where thermal activation, and we arrive at a second Ohmic
¢() is the distribution of pinning energies, which for a fégime at small current densitigs< j,. with a reduced
large number of defects we assume to be Gaussian [g] "esistivity descrlbedzby 2thermally activated flux flow
pTarF ~ prr €XP(— U, /T?) [here, prr = (B/H,,)pn is

1 F? the usual flux-flow resistivity, wittf,, the upper critical
JTU,E? U2 field andp, the normal-state resistivity]. Glassy response
b appears only at low current densitigs< j, < jpc, when

Here, U, quantifies the disorder strength awdis the the free thermal hopping of pancake vortices is' inhibited
planar coherence length (and also the typical distancBY the elastic coupling to other pancake vortices. To
between pin states). Far>> ¢ (strong pinning) each determinej, we have to consider the hopping process of

pancake vortex can explore many minima and one finds individual pancake vortices. FOIIOWing the usual variable-
range-hopping (VRH) argument [10], a pancake vortex

u?\ 172 can move freely as long as the current compensates for
Eolu) = _UP[In<§>} < U @ the energys F (1) required to hop on to the next favorable

em

g(E) =
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state. The “minigap’d E () is obtained from comparing temperaturd’,. is determined by the conditioN(7,,.) =
neighboring favorable states: With [F' dFg(F) =2  (u>)n/2£2. For the distribution (1) we findT,, =
we find 8 E(u) = E, — Fo = U,[In(?/¢)]"2. The Up. At T > T, the entire setV(T) = (u’)w/&* of
onset of glassy response is determined by the conditiopinning states takes part in the smoothing and Eq. (10)
Jo(@o/c)ugd = 8 (uy), resulting in the critical current reproduces the standard expression [1E},(L,T) =

density Upy E2/(u*)my/L/d.
. [ E.p |2 U, \1 4 Within the VRS regime at low temperaturés < 7' <
jg = Jp< U, ) [|H<E ﬂ , (7) T, we use suit%bk; numerical interpolations for the error
em . 0ot n —
and the corresponding pinning energy function [from [z " dEg(E)E", (n = 0,2)],
U —1/2 T \'/2 T
Uy = 8F (1) = Up[m( ? )} _ 8 NI = (—) exp(—), (AER(T) = T,T,
Eem Tg Tg
As the external curreny decreases below,, single (11)

pancake vortices cannot find an appropriate final state arguch thatZ,, (d, T) goes over toU, (U,/é2/(uw) as
more and vortex motion involves line segments with ar \, T, (T / T,.). The vortex free energy per unit
length determined by the usual laws of creep dynamic$ength takes the form

[38, L(j) = Lg(jg/j)*"" (here,L, = d). £ A2\ ()
Going over to finite temperature, we note that the f(L,T) = == In(l + E) 5
situation remains unchanged fbr< U, [(0-0)D regime]. ¢
As T increases beyond,, the process of variable-range T <§>3/4 xr(—i> d (12)
thermal smoothing (VRS) sets in: Thermal fluctuations d\T 2T, L’

push the vortices to probe an ared)y, > u;, but elastic  Again, the minimum off with respect tol. defines the
forces prevent individual pancake vortices from hoppingyinning lengthL,. Inspection of Eq. (12) reveals that the
to favorable states, hence segments of ledgtt¥) > d  minimum atL = 4 vanishes atl’ = T,, implying that

will take over the creep process. The the_rmal hopping _og (T) is determined by the minimum at large lengths,
these segments then leads to the smoothing of the pinnin

1/3 1/2
energy. Hence, the temperatufg = U, defines a (first) L(T) = )\<i> / (1) / exp<i> < A*/d. (13)
thermal depinning temperature in our problem. d T, 3T,

We proceed with a detailed analysis of VRS: TheThe jump fromL, = d to L,(T) > A atT = T, implies
mean-squared thermal displacement of a free vora concurring jump in the pinning energy and the critical

tex segment of lengthl. is given by (u*(L,T))n =  current density,
fiﬁ(dkz/zw)[T/sl(kz)kzz], and using the dispersive AN (T \!? T
elasticity from above, we find UM =T(—) |7 ) e T31,) (14)
é‘:z T, d<L<A2/d, d 2/3 T 1/2 2T
L, Ty = Fep 9 O B I e 1 _=
(L, T))n {52 E];m L/i\_];’ AJd <L, 9) Jo(T) = j, 3 T ex 3T, ) (15)

(for d < L < u we should account for a log correction The jump at7, is a consequence of the strong dispersion
In[(A/&)?E.m/T] guaranteeing the smooth crossover toin the electromagnetic line tension and persists into the
u2 as(L,T) \. (d,T,)). The thermally smoothed pinning high-field regime [9], where it matches up with the
energy for a vortex segment of lengthis given by [9] jump found by Koshelev and Kes [12] in thelf =
> 0 analysis of this problem. A sharp increase (jump)
Toin(L,T) = /M\E T>T,. (10) in the activation energyU by a factor of 10 with
e N(T) d’ § increasing temperaturél’ = 15 K) has been found in
Here, ((AE)?) = (E2) — (E)? denotes the fluctuation Several relaxation experiments in BiSCCO material [13].
in the pinning energy [use Eq. (1)], which is equal to Attemperature abové,. we can ignore the underlying
U2 at T =T, and tends toU2/2 as T — ». N(T) strong pinning. Repeating the above minimization proce-

is the number of available states given the search ared!'® With the usual smoothed pinning potential [11], we
P, N(T) = (), f?”dfg(f), with lower and obtain the weak-pinning results (1D regime)

upper limitsN(T,) = 1 and N(T — %) = (u®) /€2 It L(T) = /\(i T3 )1/3 _ AT (16)
is the suppression in the number of available states, ¢ d EemU} d Tg,’

N(T) < {u®)n/€?, which distinguishes the new VRS 2 1/3

from the conventional smoothing occurring within weak Ue = <E Eem U,2,> =Tgp» (17)
collective pinning theory [11]. This reduced smoothing s p2 N3, 32

is a consequence of strong pinning and is realized Jo(T) = (d_ Eem> <h> (18)
within the regimel’ < T,., where the (second) depinning ‘ A U T ’
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where we have introduced the single-vortex depinningo the vortex-solid regime below the melting lidg,(T')
temperaturdj,. Quick inspection shows thadt.(T), U.,  [14]: Upon melting, both the shear and tilt moduli vanish
and j.(T) match up withL,(T), U,(T), and the onset of in the resulting pancake-vortex gas phase, cutting off the
glassy response @t(7) whenT \ Ty.. 1D and 3D pinning regimes &,),(T).

When the collective pinning lengti.(T)) exceeds Our analysis (and its generalization to higher fields [9])
A?/d the mean thermal displacement grows with in-sheds light on two recent experiments in layered BiSCCO
creasing length and pinning becomes marginal [3]material. The Maley analysis of the creep barrier as mea-
The determination ofL.(T) involves the calculation of sured by van der Beekt al. [4] is consistent with a di-
the disorder-induced fluctuation$<u?,(L, T))), where verging barrierU(j — 0) — oo, rather than the constant
{(-)) denotes averaging over thermal fluctuations andarrier expected for strong pancake pinning in the low-
disorder. Repeating this calculation for the case off'/low-B domain. The above results explain how indi-
electromagnetic coupling, we finc[(uf,(L, T)))/&* =  vidual pancake vortices couple into vortex lines exhibiting
(U,/T)*(L/d)In(Ld/A%). As the disorder-induced fluc- diverging barriers as the driving force vanishes. Second,
tuations increase beyond the thermal ones, the systergcent local Hall-probe measurements of the current flow
crosses over to the pinning-dominated regime. The conh BiSCCO crystals show a sharp, roughly temperature-
dition (<u§(L,T)>) = (u*(L, T))m determines the length  independent onset of bulk pinning as the temperature de-

A T \3 creases below = 40 K [6]. This experimental finding
L(T) = A— exp( 5 ) , (19) is in agreement with the appearance of strong nonlineari-
d Tdp ties in the CVC below the temperatufg.; see Fig. 1.

and the critical current density takes the form The definite identification of this pinning onset with ei-
& EANB [T 3/ 7T\ ther j,. or j, requires a detailed amplitude and frequency
Je(T) = jp(ﬁ Ue;n) T eXF{—E (Ts ) } analysis of the experimental feature.
P dp dp We thank A.E. Koshelev, M. Niderost, A. Suter, and

) B. Khaykovich for stimulating discussions, and the Swiss
The above results properly match the previous onefational Foundation for financial support.
at the crossover temperatufe = Tj,. The complete

temperature dependencies of the (critical) current densities
Jper e, @andj, are illustrated in the inset of Fig. 1.
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