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Quantum physics plays an increasing role in
our daily life: most modern computer chips are
structured on length scales of several nanome-
ters and even sunscreen often contains nanopar-
ticles to increase its effectiveness. On these length
scales quantum effects begin to play an important
role. Though most people don’t know about these
applications of quantum physics, experiments on
quantum teleportation and quantum cryptogra-
phy have led to a high publicity of this inter-
esting field of physics. Here I would like to re-
view some quantum-mechanical concepts needed
to understand the physics behind these topics and
discuss how quantum teleportation and quantum
cryptography work.

Overview This work is organized as follows: first the
mathematical framework needed to describe measure-
ments on entangled systems is introduced. In the sec-
ond chapter it is shown, that local measurements destroy
the entanglement of entangled states, and how this can
be circumvented by performing non-local measurements.
The central result of the second chapter, the Bell measure-
ment, is then used to show how quantum teleportation and
quantum cryptography work. In the last part it is shown
how entanglement distillation can be used to increase the
degree of entanglement of a quantum mechanical system.
Basic knowledge of quantum mechanics and entangled sys-
tems is presumed. This work closely follows chapter 9 and
11 of ref. [1].

Mathematical framework An entangled system SAB is
made up of (at least) two subsystems SA and SB . Each
system (qubit) is in a state |ϕ〉 = α |0〉+β |1〉 (with the two
linearly independent basis states |0〉 and |1〉 and constants
α, β ∈ C). It is useful to define the “Bell basis”:∣∣ΦAB
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As can be seen from eq. (1) and (2) each Bell state has a
parity bit (either Φ or Ψ) and a phase bit (plus or minus).
Thus, two bits can be stored in the Bell states (in the en-
tanglement; non-locally). The non-locality of information
storage makes reading out this information much harder,
but also leads to interesting new phenomena, as will be
shown below.
It is useful to discuss some properties of Bell states.

Bell states are maximally entangled and are eigenvectors
of the product operator σA

k σ
B
k (k = x, y, z) corresponding

to eigenvalues of ±1. I will show this for one example and
leave the rest of the proof as an exercise to the interested
reader:
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Another useful property of Bell states is, that any Bell
state can be transformed unitarily into any other Bell state
by acting on only one subsystem with the Pauli operators
σk :1
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A similar property of the Bell states is, that the action of
a Pauli-operator σA

k in one subsystem can be replaced by
the action of a Pauli operator σB

k in the other subsystem
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times a constant (i.e. σA
k → β · σB

k with β=1, i or -i). For
example we have:
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Measurements on entangled systems In the last part
we have seen some properties of the Bell states, which are
useful for possible applications. Of course one needs to ex-
tract information (phase bit and parity bit) from the Bell
states in order to use them in applications like quantum
cryptography.

A (projective) quantum mechanical measurement al-
ways involves a projection onto the eigenstates of a lin-
ear hermitian operator A (observable), which is associated
with a physical quantity and can be written in its spec-
tral decomposition as A =

∑
aj |aj〉 〈aj |. If we perform a

selective measurement on our system, the initial state |ϕ〉
is transformed with a probability pj = 〈aj |A |ϕ〉 into the
final state |aj〉 (and eigenstate of A).

What happens if we try to measure the observable σA
z σ

B
z

of a Bell state
∣∣ΦAB

+

〉
in a “local” way (i.e. by first mea-

suring σB
z in SB and then σA

z in SA)?

Figure 1: Scheme of the Bell measurement: a transformation
U transforms an arbitrary state from the Bell basis into the
computational basis. A local measurement projects onto the
states of the computational basis, and the inverse transforma-
tion U−1 transforms the resulting state back into the Bell basis
again.

Figure 2: A quantum circuit for a Bell measurement. The cir-
cuit transforms states of the computational basis into states in
the Bell basis. If the states are passed through the circuit in the
reverse direction (i.e. first subjected to the CNOT operation
and then to the Hadamard gate), Bell states are transformed
into states in the computational basis

If a measurement of σB
z is performed on the subsystem

SB , the initial (entangled) Bell state∣∣ΦAB
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surement of σA
z in SA will not change this result. Obvi-

ously a local measurement breaks the entanglement and
a “non-local” measurement would be needed to prevent
this. Note, that the results of the two measurements are
perfectly correlated.
In a lab only local operations can be performed: ob-

viously a “non-local” measurement has to be done using
local measurements. One way to realize this is the so
called “Bell measurement”. Its basic idea is to rotate the
Bell basis such that it coincides with the computational
basis and then perform a local measurement in this basis.
The resulting state is then rotated back into the Bell basis
to ensure that the state after the measurement is a Bell
state (cf. Fig. 1). Mathematically the rotation is done
by a unitary transformation U = H · CNOT (cf. Fig. 2),
where H denotes a Hadamard transformation and CNOT
a “controlled not” operation (sometimes also called XOR).
The proof is very simple:
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The reverse direction and the proof for the remaining
three Bell states is trivial2 3.

Using the transformation U, we can now transform the
Bell states into states in the computational basis, perform

2The reverse direction is clear because of the unitarity of H and CNOT (the quantum circuit is simply traversed in reverse)
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Figure 3: Setup for the teleportation of a quantum mechanical state (quantum teleportation). The state
˛̨
ϕC

¸
is teleported from

Alice to Bob. To this end an entangled system is prepared and one subsystem (SA) is sent to Alice, the other subsystem (SB) to
Bob. Apart from this initial preparation, no exchange of matter takes place.

a local measurement in the computational basis and trans-
form the resulting state back into the Bell basis. These
three steps are called a “Bell measurement”. A Bell mea-
surement yields the full information (parity and phase bit)
about a Bell state and does not break the entanglement.

Quantum cryptography Quantum cryptography is a
very promising candidate for commercial applications of
entangled systems. The term “quantum cryptography”
might be a little bit misleading: quantum cryptography is
usually only used to exchange a key or increase the length
of an already established key.4 If a long, random key is
established, that is used only once, simple, unbreakable
protocols can be used to encode text.
One such protocol is the Vernam coding: Imagine that

Alice has a message, consisting of a sequence of zeros and
ones (length N , e.g.‘00110100110′), which she would like
to send to Bob. Both Alice and Bob have the same key
of length L ≥ N (e.g. ‘01011101011′). Alice adds (bit by
bit, modulo two5) the message and the key:

00110100110
+01011101011
=01101001101

and sends the result (01101001101 in the example) to Bob.
Bob sums the encoded text and the key and retrieves the
original message:

01101001101
+01011101011
=00110100110

An eavesdropper (Eve) would not be able to read the text,
because she does not have the key.
The remaining question to ensure totally secure com-

munication is: How can the key be exchanged in a se-
cure way? Here quantum mechanics can be used advanta-

geously, because any measurement by Eve would change
the state and could be noticed.
A conceptually simple protocol for the key-exchange is

the BBM92 protocol [2]. Here an entangled system is pre-
pared in the Bell state

∣∣ΦAB
+

〉
and one subsystem (SA) is

sent to Alice and one (SB) is sent to Bob. Both have
two bases to perform a measurement: {|H〉 , |V 〉} and
{|H ′〉 , |V ′〉}, where H ′ and V ′ are rotated by 45° relative
to H and V . These states can be thought of as photons
with linear polarizationsH/V andH ′/V ′ (i.e. polarized in
the horizontal/vertical direction and at -45°/45°, respec-
tively). For each photon pair, Alice and Bob choose from
the two possible bases in a completely random manner
and independently of each other. Afterwards Alice and
Bob exchange information about the chosen polarization
directions and throw away all the results for which they
did not use the same basis. If there was no eavesdropper,
the other results are perfectly correlated and can be used
as a key. The key is perfectly random, because it was
obtained with a quantum mechanical meausurement.
To check, whether someone was trying to listen, Al-

ice and Bob have to exchange a part of the key publicly.
Because the polarization of the photon cannot be deter-
mined in one measurement and quantum states cannot be
copied (no-cloning theorem), Eve cannot get the key. She
is, however, of course able to prevent Alice and Bob from
exchanging the key, by simply measuring or absorbing all
the photons. A man-in-the-middle attack is also possible,
if Eve controls all communication between Alice and Bob
(i.e. both the quantum channel and the classical channel).

Quantum teleportation Teleportation has long been
used as a convenient method to save the hero in science-
fiction movies in the most improbable of ways. “Teleporta-
tion” usually refers to the process of one human or object
appearing at a different location while disappearing at the
original location. Here another type of teleportation is dis-
cussed: quantum teleportation, where a state is teleported
to a different location. It is important to emphasize, that

4To prevent a man-in-the-middle-attack a previously established key has to be used to authenticate the communication-partners.
5i.e. 0+0=1+1=0 and 1+0=0+1=1



Figure 4: Setup for entanglement swapping. Two entangled systems, SAB and SDC are prepared at Alice’s and Bob’s location,
respectively. The subsystems SB and SC are sent to a common location and a Bell measurement is performed on the system SBC .
This measurement entangles the system SAD - even though the subsystems SA and SD can be at completely different locations.

only a state, not matter, is teleported.
To see how this works we use the same system as in

the last paragraph, i.e. an entangled system, which was
prepared in the Bell state ΦAB

+ and in part sent to Alice
(subsystem SA) and Bob (subsystem SB). At Alice’s lo-
cation there is a third system SC which is in a state

∣∣ϕC
〉
.

(cf. Fig. 3) The goal is to teleport the state of
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〉
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Bob.
In order to do this, the total state of the tripartite sys-

tem is rewritten in a different form:∣∣ϕC
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In the second equality, the brackets were factored out
and the terms of the form

∣∣XC
〉 ∣∣Y A

〉
(X and Y are ei-

ther 0 or 1) rewritten in terms of a new Bell basis of
the subsystem SAC . In the fourth equality a new state∣∣ϕB

〉
:= a

∣∣0B
〉

+ b
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〉
was defined. It is important to

note, that until now nothing has changed physically.
To carry out the teleportation, Alice performs a selec-

tive Bell measurement on the system SAC . This projects
onto a Bell state and all terms, but one drop out of the
sum in the last line of eq. (3). Now Bob’s system SB is
in a state β · σB

k

∣∣ϕB
〉
. If Alice tells Bob the result of her

measurement he can perform the corresponding unitary
operation and his system ends up in the state

∣∣ϕB
〉
- the

state
∣∣ϕC

〉
has been teleported to Bob.

Even though it might look as if teleportation violates
fundamental physical laws, this is not the case: Because
Alice has to call Bob, before the system is teleported, no

information can be teleported faster than light using quan-
tum teleportation and the special theory of relativity is
not violated. The no-cloning-theorem is not violated ei-
ther, because the state

∣∣ϕC
〉
is no longer present at Alice’s

location.

Entanglement swapping It was just shown, how a selec-
tive Bell measurement can be used to teleport a state. A
similar application of entangled systems is called “entan-
glement swapping”. Two Bell states
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prepared at Alice’s and Bob’s location (cf. Fig. 4) and
the total state of the system SABCD can be written as6:∣∣ψAB
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If a selective Bell measurement is performed on the sub-
system SBC , again all terms in the sum but one drop
out. The subsystem SBC will be left in a Bell state (e.g.∣∣ΦBC

+

〉
), corresponding to the measurement result - the

system SBC is now entangled. The interesting thing is,
that the subsystem SAD will be left in a Bell state (e.g.∣∣ΦAD

+

〉
), too. This means, that the Bell measurement

on SBC has entangled the subsystems SA and SD, even
though SA and SD might be thousands of miles apart!

Entanglement distillation Until now it was always as-
sumed, that maximally entangled pure states are readily
available and that quantum channels are noise-free. In an
experimental situation this is, however, usually not the
case. Therefore, it is important to show how the (aver-
age) degree of entanglement of mixtures can be increased
using a “distillation protocol”.
The idea of this protocol is to use two pairs of entangled

states, perform a selection based on local operations and
classical communication and sacrifice some pairs. The re-
maining pairs then have a higher degree of entanglement.

6The maths is basically the same as in eq.(3). The only difference is, that now two new Bell basis (AD and BC) are defined and used to
express the state.



Figure 5: The quantum circuit for entanglement distillation (left) consists of two CNOT-gates and two measurement devices at Alice’s
and Bob’s locations, respectively. The target pair is always sacrificed (the entanglement is destroyed by the local measurement),
the control pair is only destroyed, if the measurement results disagree. From the plot of the function F ′(F ) it is obvious, that the
degree of entanglement for the remaining pairs is increased, if the original degree of entanglement was F > 0.5 (right). Blue lines
correspond to one example for the protocol, starting from a fidelity of F ≈ 0.6

Mixed states are assumed to be of the form (with a
parameter 0 < F < 1, known as the fidelity):

ρ = F
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The quantum circuit for this protocol of entanglement dis-
tillation is shown in Fig. 5. If the states of both target and
control pair can be written like eq. (4), the mixed state of
all 4 qubits before the CNOT-transformations has terms
proportional to F 2, (1 − F )2 and F (1 − F ). After the
CNOT transformations these terms become7:
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Now two local selective measurements in the computa-
tional basis are performed on the target pair. If the results
agree, the control pair is kept, if not, it is destroyed. This
means, that the terms proportional to F (1−F ) drop out.
The density operator of the resulting state can be written
as in eq. (4), but with a new fidelity F ′:

F ′ =
F 2

F 2 + (1− F )2

From this function it is clear, that the degree of entan-
glement is increased, if the initial fidelity F was greater
than 0.5. In principle the degree of entanglement can be

increased to arbitrary high values (by sacrificing an ar-
bitrary large number of states!). In practice a balance
between the number of pairs sacrificed and the degree of
entanglement achieved has to be found. In practice noise
also limits the maximal degree of entanglement achievable.

Summary In this work, some applications of entangled
systems were presented. To understand the physics be-
hind these applications, the Bell basis was introduced and
some of its properties were discussed. It was shown, that
a local measurement on an entangled system breaks the
entanglement and how this can be circumvented, by ro-
tating the basis (Bell measurement). This tool was then
used to show, how quantum cryptography makes a secure
key-exchange possible and how quantum teleportation
works. In the last part we have discussed entanglement
distillation and it was shown, that an arbitrary high de-
gree of entanglement can - in principle - be reached by
sacrificing some of the qubit pairs.
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