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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in semicon-
ducting carbon nanotubes. In our model, we take into account the following characteristic features of carbon
nanotubes: �i� fourfold �spin and valley� degeneracy of the quantum-dot levels, �ii� the intrinsic spin-orbit
interaction which is enhanced by the tube curvature, and �iii� valley mixing due to short-range disorder, i.e.,
substitutional atoms, adatoms, etc. We find that the spin-valley blockade can be lifted in the presence of
short-range disorder, which induces two independent random �in magnitude and direction� valley-Zeeman
fields in the two dots, and hence acts similarly to hyperfine interaction in conventional semiconductor quantum
dots. In the case of strong spin-orbit interaction, we identify a parameter regime where the current as the
function of an applied axial magnetic field shows a zero-field dip with a width controlled by the interdot
tunneling amplitude, in agreement with recent experiments.
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I. INTRODUCTION

Recent developments of experimental techniques allow
for preparation, manipulation, and readout of few-electron
spin states in quantum dots �QDs�,1 indicating the strong
potential of these systems for future application in quantum
information processing.2 A major factor limiting the perfor-
mance of quantum-dot spin qubits in widely used III-V semi-
conductors �e.g., GaAs� is spin decoherence due to hyperfine
interaction with nuclear spins. A strategy to suppress spin
decoherence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon structures,
such as carbon nanotubes �CNTs� or graphene, are prime
candidates for that purpose as the natural abundance of spin-
carrying 13C nuclei is very small �1%�. This observation has
motivated intensive theoretical investigation3–14 and the ex-
perimental realization of QDs in carbon nanostructures.14–29

Further perspectives of carbon-based quantum information
processing have been opened by proposals suggesting to uti-
lize the valley degree of freedom of the delocalized electrons
as a qubit,30,31 and to exploit the interplay of spin-orbit in-
teraction, valley mixing, and the bending of CNTs for imple-
menting qubit operations.32

The Pauli blockade or spin blockade effect1,33 in conven-
tional semiconductor double QDs �DQDs� has provided a
distinct probe of spin physics in these devices and has been
utilized in the past decade for various purposes in the context
of spin qubits. A basic application is spin-state initialization
and readout in experiments realizing resonant manipulation
of single spins.34–36 Pulsed-gate techniques combined with
the spin blockade setup have been used37–39 in qubit manipu-
lation experiments where the information was encoded in the
two-electron spin states S and T0 or S and T+. Similar experi-
ments have been utilized to prepare the state of the nuclear-
spin ensemble of the crystal lattice, with the aim of prolong-
ing the decoherence time of the qubit.40–42 Furthermore, spin
blockade has been proven an efficient tool to gain informa-
tion about the mechanisms of spin relaxation and decoher-
ence, and the corresponding energy scales. In particular, it

has been applied to measure the energy scales of
hyperfine43,44 and spin-orbit interactions.45,46 The implemen-
tation of this range of functionalities in carbon-based quan-
tum dots, potentially showing improved qubit performance,
is an intense ongoing effort.20–22,29

In this work, we consider Pauli blockade in a transport
setup,1,33 where electrons are transmitted from the source to
the drain in a serially coupled DQD via the �0,1�→ �1,1�
→ �0,2�→ �0,1� cycle �Fig. 1�. Here �nL ,nR� denotes the
charge state with nL �nR� electrons in the left �right� QD. In
conventional semiconductor DQDs, if the �1,1� and �0,2�
states are aligned in energy, then states sharing the same spin
state become hybridized due to interdot tunneling. The only
energetically available �0,2� state has a singlet spin state,
therefore it hybridizes with the �1,1� singlet only, leaving the
three �1,1� triplet states without a �0,2� component. This im-
plies that whenever a �1,1� triplet state is occupied in the
transport process the current is blocked since the �1,1� triplet
state cannot decay to a �0,1� state: the occupation of �1,0�
states is energetically forbidden and the source connected to
dot L cannot absorb the electron. The blockade can be lifted
by various mechanisms influencing spin dynamics, e.g., hy-
perfine interaction, spin relaxation, etc., resulting in a non-
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FIG. 1. �Color online� Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an external
magnetic field B aligned with the tube axis. In this regime electrons
are transported from source �S� to drain �D� while the DQD occu-
pancy changes between single and double. Spots represent elec-
trons; the figure shows the �0,1� charge configuration of the double
dot. Lead-dot tunneling rates �L, �R and interdot tunneling ampli-
tude t are indicated.
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zero steady-state current, termed as the “leakage current,”1

through the DQD.
This explanation is altered in the case of electrostatically

defined CNT DQDs �Fig. 1� where the valley degeneracy of
the electronic spectrum is maintained,10,21 resulting in
fourfold-degenerate �spin and valley� quantum-dot energy
levels �see Fig. 2�. In this case the six �0,2� states have com-
bined spin-valley wave functions which are antisymmetric
under particle exchange. We refer to such states as super-
singlets. The 16-dimensional �1,1� subspace can be separated
to a six-dimensional supersinglet subspace and a ten-
dimensional subspace of combined spin-valley wave func-
tions being symmetric under particle exchange, i.e., super-
triplets. Hybridization occurs between the �0,2� states and
the �1,1� supersinglets, and the �1,1� supertriplets do not ac-
quire any �0,2� components. As discussed above for the case
of conventional semiconductor DQDs, this leads to a block-
ade of the transport. The blockade can be lifted by various
mechanisms affecting the spin and valley dynamics. To dis-
tinguish the cases of conventional and CNT DQDs, we refer
to them as spin blockade and spin-valley blockade in the
following, respectively.

Here we focus on recent experiments21,22 observing the
spin-valley blockade in clean CNT DQDs with natural �1%�
and enriched �99%� 13C abundance. Charge sensing data21

indicates that in these samples the valley degeneracy was
maintained in contrast to other observations.20,29 In the case
of the isotope-enriched samples, a zero-field peak has been
observed22 in the magnetic-field dependence of the leakage
current at small interdot tunneling. Following a model devel-
oped for GaAs DQDs,44 this feature has been attributed to
hyperfine interaction, although the corresponding energy
scale inferred from the measurement is two orders of mag-

nitude larger than the theoretical estimates.6,47 This discrep-
ancy has not yet been explained. At large interdot tunneling,
the observed magnetotransport data show a zero-field dip21,22

with a width controlled by the transparency of the interdot
tunneling barrier, irrespective of the dominant isotope spe-
cies. In InAs DQDs, a similar feature has been measured
recently,45,48 and good agreement has been found with a phe-
nomenological model incorporating spin-orbit-enabled spin-
flip interdot tunneling and spin relaxation.46 The same
mechanism might be responsible for the observed magne-
totransport in CNT DQDs as well.

In this work, we provide an alternative explanation of the
zero-field dip found in the magnetotransport curve of CNT
DQDs in the spin-valley blockade regime. Using a micro-
scopic model, we argue that the disorder-induced valley dy-
namics is different in the two dots, resulting in the lifting of
the spin-valley blockade and allowing for a finite current
through the DQD. In this mechanism, disorder plays a role
analogous to hyperfine interaction in conventional semicon-
ductor DQDs.

To show this, we set up a model Hamiltonian for the DQD
accounting for the following unconventional properties of
CNT QDs: �i� fourfold �spin and valley� degeneracy of the
QD energy levels, �ii� the intrinsic spin-orbit interaction
which is enhanced by the tube curvature and induces an en-
ergy splitting between Kramers pairs, and �iii� valley mixing
due to short-range disorder, i.e., substitutional atoms, ada-
toms, etc. We provide a microscopic analysis of property
�iii�, resulting in an effective Hamiltonian for a single four-
fold degenerate QD level. We find that disorder appears in
this Hamiltonian as a random �in magnitude and direction�
effective magnetic field acting on the valley degree of free-
dom. We express this valley-Zeeman field as a function of
the disorder configuration and the envelope function of the
electron occupying the QD. Our transport calculations are
based on a Born-Markov master equation. The main finding
of this work is that the disorder-induced valley-Zeeman
fields provide a mechanism that lifts the spin-valley block-
ade. Depending on the relative significance of spin-orbit in-
teraction and disorder, we identify different patterns in the
magnetic-field dependence of the steady-state current. In the
case of strong spin-orbit interaction, we find a zero-field dip
in the magnetotransport curve, in agreement with recent ex-
periments, however our model does not include spin-flip tun-
neling or spin-relaxation processes. In the case of strong dis-
order, we find that the magnetotransport curve can show both
a zero-field dip and peak, depending on the disorder configu-
ration.

The rest of the paper is organized as follows. In Sec. II,
we provide a microscopic analysis of short-range disorder in
a CNT QD. In Sec. III, the model Hamiltonian of the CNT
DQD and the master-equation approach is described. In Secs.
IV and V, we study the magnetotransport in the spin-valley
blockade regime in the cases of strong spin-orbit interaction
and strong disorder, respectively. Our conclusions are pre-
sented in Sec. VI.

II. SHORT-RANGE DISORDER IN THE QUANTUM-DOT
HAMILTONIAN

In this section, we consider a single electrostatically de-
fined QD in a semiconducting CNT, in the presence of a
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FIG. 2. �Color online� �a� Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned with the
tube axis. �b� Magnetic-field dependence of the spin-orbit-split
single-electron ground state sublevels of a nanotube quantum dot,
obtained from diagonalizing H0+Heff,dis �see Eqs. �5� and �9��. Spin
and valley quantum numbers of the energy levels are indicated on
the right.
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homogeneous magnetic field. Our aim is to derive a 4�4
effective Hamiltonian describing the effect of the short-range
disorder present in the CNT on a fourfold �spin and valley�
degenerate state of the QD. We show that in this effective
Hamiltonian the short-range disorder appears as an effective
magnetic �Zeeman� field acting on the valley degree of free-
dom, and having a random magnitude and direction.

First we consider a CNT QD model without spin-orbit
interaction and short-range disorder. We choose the z axis of
the coordinate system as aligned with the axis of the CNT,
and the x coordinate is measured along the circumference of
the nanotube as indicated in Fig. 2�a�.

The four tight-binding wave functions, corresponding to a
fourfold-degenerate single-particle energy level of the QD
have the form49

��vs�l� � ��v�l��s = ��celle
i�vK·rl�+�v����

�v��rl���s, �1�

where s� �↑ ,↓���+,−� and v� �K ,K����+,−� are spin and
valley quantum numbers. Furthermore, �� �A ,B� is the sub-
lattice index, l is the unit-cell index, �cell is the unit-cell area,
rl�= �xl� ,zl�� is the position of the carbon atom on sublattice
� in the lth unit cell, the phase factors49 in the exponential
are �K,A=�K�,B=0, �K�,A=	, and �K,B=	−
 /3 with 	 being
the chiral angle of the CNT, and �+= �1,0� and �−= �0,1� are
the two possible spin states with axial polarization. The four
smoothly varying envelope functions ��

�v� can be obtained by
solving the Dirac-type envelope function equations49 for v
� �+,−�,

�vF��xpx + v�ypz� + Vconf�z��	�A
�v�

�B
�v� 
 = E	�A

�v�

�B
�v� 
 . �2�

Here �x and �y are Pauli matrices, corresponding to the sub-
lattice degree of freedom and Vconf�z� is a smooth confine-
ment potential, e.g., induced by electrostatic gates. Note that
our choice of the coordinate system �see Fig. 2�a�� implies
that pz �and not py� appears in the envelope Hamiltonian. The
functions ��

�v� and �vs are normalized,

1 = �
0

2
R

dx�
−�

�

dz���A
�v��r��2 + ��B

�v��r��2� , �3a�

1 = 

l�

��vs�l�
† ��vs�l�, �3b�

where R is the radius of the nanotube.
Our goal is to set up a 4�4 effective Hamiltonian de-

scribing the valley mixing due to short-range disorder. Short-
range disorder can be caused by any kind of atomic faults of
the crystalline structure: substitutional or interstitial atoms,
vacancies, adatoms, etc. We take into account short-range
disorder in the tight-binding model as a static random on-site
potential Vi, i.e., �Hdis,TB�i,j =Vi�ij. �i= �l�� is an index com-
bining the unit cell index l and the sublattice index �.� With-
out the loss of generality, we can assume that the disorder
potential has zero mean, �Vi�=0. The short-range impurities
are typically charge neutral, and therefore the interaction be-
tween them is weak. This suggests that the random on-site
potential is spatially uncorrelated, �ViVj�=�ij�Vi

2�. A further
plausible assumption is that the CNT is homogeneous. Mo-

tivated by these observations, we model the disorder poten-
tial on the different sites as independent and identically dis-
tributed random variables. Since we focus on valley effects,
we neglect possible sources of spin-dependent short-range
disorder, such as hyperfine interaction due to 13C atoms10

and adatom-enhanced spin-orbit interaction,50 for example.
To derive an effective 4�4 Hamiltonian describing the

effect of the short-range disorder, we project the tight-
binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding projec-
tor is

P = 

vs

��vs���vs� . �4�

The same method has been used recently by us to analyze the
effect of hyperfine interaction in carbon-based QDs.10 The
obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP = �b0
̃0 + bx
̃x + by
̃y + bz
̃z� � s0

� �b0
̃0 + b · �̃� � s0, �5�

where

bk = �cell

l�

Vl�Fl�
�k� �6�

for k� �0,x ,y ,z�. Here, Fl�
�0�=
v���

�v��rl���2 /2,
Fl�

�z�=
vv���
�v��rl���2 /2, and Fl�

�x/y�=Re / Im
��e2iK·rl�ei��+�−�−����

�−���rl����
�+��rl���. The operators 
̃0,x,y,z

are natural representations of the Pauli matrices on the two-
dimensional Hilbert space spanned by �K and �K�, i.e.,


̃0 = ��K���K� + ��K����K�� , �7a�


̃x = ��K���K�� + ��K����K� , �7b�


̃y = − i��K���K�� + i��K����K� , �7c�


̃z = ��K���K� − ��K����K�� , �7d�

and s0 is the unit matrix in spin space. The first term in Eq.
�5�, proportional to 
̃0, is just a simultaneous shift of the four
energy levels. The second term in Eq. �5� is reminiscent of a
Zeeman coupling Hamiltonian but here the roles of spin and
the magnetic field are played by the valley operator �̃ and the
disorder-induced effective magnetic field b, respectively.

In the presence of time-reversal �T� symmetry bz=0 be-
cause in this case T�v is �−v up to a phase factor, implying
���

�v��rl���2= ���
�−v��rl���2 and therefore Fl�

�z�=0. In CNTs, in
the case of moderate magnetic fields this statement still
holds: an axial magnetic field induces an Aharonov-Bohm
phase which does not modify the electronic wave functions
�although induces energy shifts�, and a perpendicular mag-
netic field interacts primarily with the spin of electrons via
the Zeeman effect as long as the magnetic length is much
larger than the nanotube radius. Therefore, throughout this
paper we omit the bz term from the effective disorder Hamil-
tonian Hdis,eff.

The remaining valley-Zeeman field b= �bx ,by ,0� is ran-
dom in the sense that it depends on the actual disorder con-
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figuration. We consider some statistical properties of the
valley-Zeeman field in the following. First, the averages of
its components are

�bx,y� = �cell

l�

�Vl��Fl�
�x,y� = 0. �8�

Second, the variance of the components can be evaluated
assuming that the envelope functions are “flat,” i.e., ���

�v��2
=1 / ��cellN�, with N being the total number of carbon atoms

in the QD. The result is �bx,y
2 �=

�Vi
2�

2N . Furthermore, it can be
proven that for large N, the quantities b0, bx, and by become
statistically independent and characterized by Gaussian dis-
tributions, potentially facilitating future modeling of carbon-
based QDs where disorder averaging is necessary.

Our results imply that the disorder-induced valley split-
tings in the quantum-dot energy spectrum should have an
order of magnitude ��bx,y

2 �. The typical on-site energy Vi on
an impurity site is presumably on the atomic energy scale,
therefore we take 1 eV as an estimate. Taking a quantum dot
containing 105 atomic sites and 50 impurity sites we find the
disorder-induced valley mixing energy scale ��bx,y

2 �
�50 �eV, consistent with recent experiments carried out on
CNT single and double quantum dots.19,21

It is important to note that the model presented in this
section relies on the assumption that the disorder-induced
valley-mixing energy scale is much smaller than the level
spacing in the QD, i.e., the energy distance between the
fourfold-degenerate level under consideration and its neigh-
boring fourfold-degenerate levels. Recent measurements19,21

imply that this assumption is reasonable in clean CNT QD
devices. In the case when this assumption is invalid, i.e., if
the valley-mixing energy scale becomes comparable to the
level spacing, then valley mixing might become efficient be-
tween subsequent fourfold-degenerate levels, which implies
that even the picture of independent fourfold-degenerate lev-
els breaks down, let alone our model based on the concept of
the valley-Zeeman field acting on a single fourfold-
degenerate level. The mechanism that strong disorder mixes
subsequent levels might actually be a reason for observing
twofold �as opposed to fourfold� electron shell filling pat-
terns in a number of CNT QD experiments.

For sake of completeness, we give the disorder-
independent part of the single-electron Hamiltonian corre-
sponding to a fourfold-degenerate QD energy level. The fi-
nite curvature of the CNT enhances spin-orbit interaction and
leads to a significant splitting ��SO�100 �eV� of the four
levels.19,51 Furthermore, an external magnetic field induces a
Zeeman splitting of the spin states, and its axial component
induces a splitting of the valley states as well. Therefore, the
disorder-independent part of the Hamiltonian is

H0 = −
�SO

2

̃zsz + �BB · 	1

2
gss +

1

2
gv
̃zẑ
 , �9�

where �SO describes the energy splitting caused by the
curvature-enhanced spin-orbit interaction, gs and gv are the
spin and valley g factors, respectively, and ẑ is the unit vec-
tor in the z direction. The form of the Hamiltonian H0 reflects
the fact that at zero magnetic field, the Kramers theorem

implies that the state pairs connected by time reversal, i.e.,
��K↑ ,�K�↓� and ��K↓ ,�K�↑� are degenerate. In Fig. 2�b�, we
give an example for the evolution of a fourfold-degenerate
level with magnetic field, which we obtain by diagonalizing
H0+Hdis,eff �cf. Eqs. �5� and �9��. The parameters used for
Fig. 2�b� are19 �SO=370 �eV, �bx

2+by
2=30 �eV, gs=2, and

gv=54. The valley-independent term proportional to b0,
which would shift the four levels simultaneously, is ne-
glected.

To conclude this section: we have demonstrated that
short-range disorder in CNT QDs appears as a random �in
magnitude and direction� valley-Zeeman field in the effective
Hamiltonian describing a fourfold- �spin and valley� degen-
erate quantum-dot level. We note that our derivation is not by
any means specific to the particular geometry of nanotubes,
and we expect the same qualitative consequences of short-
range disorder in the case of electrostatically defined QDs in
graphene4 or silicon.52–55

III. TRANSPORT MODEL FOR A DOUBLE
QUANTUM DOT

Our aim in this section is to provide a model for elec-
tronic transport through a few-electron CNT DQD which
takes into account the following characteristic features of
CNTs: �i� fourfold �spin and valley� degeneracy of the spec-
trum, �ii� spin-orbit interaction, and �iii� disorder-induced
valley mixing. In the subsequent sections, we use this model
to calculate the leakage current through a CNT DQD in the
spin-valley blockade regime.

A. Hamiltonian

We use a constant-interaction Hamiltonian to model the
few-electron CNT DQD. We take into account a single four-
fold �spin and valley� energy level in each QD. We consider
the case of spin- and valley-conserving interdot tunneling.
We write the Hamiltonian in terms of creation dLvs

† �dRvs
† � and

annihilation dLvs �dRvs� operators of electrons on the left
�right� dot having valley and spin quantum numbers v and s,
respectively,

HDQD = Hpot + He-e + Hso + Hdis + Hmagn + Htun, �10a�

Hpot = 

d=L,R

�dnd, �10b�

He-e =
U

2 

d=L,R

nd�nd − 1� + U�nLnR, �10c�

Hso = −
�SO

2 

d=L,R

sd,z
d,z, �10d�

Hdis = 

d=L,R

�bd,x
d,x + bd,y
d,y� , �10e�

Hmagn = �BB · 

d=L,R

	1

2
gssd +

1

2
gv
d,zẑ
 , �10f�
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Htun = t

vs

dLvs
† dRvs + H.c. �10g�

The terms �10b�–�10g� in the Hamiltonian describe the ef-
fects of electrostatic potential difference between the dots,
electron-electron interaction, spin-orbit coupling, short-range
disorder, external magnetic field, and interdot tunneling, re-
spectively. Here d=L ,R is the QD index, ndvs=ddvs

† ddvs, nd
=
vsndvs, 
d,i=
v,v�,s
i,vv�ddvs

† ddv�s, sd,i=
v,s,s�si,ss�ddvs
† ddvs�,

and both 
i and si �i=x ,y ,z� are the three Pauli matrices.
Note that we have incorporated the valley-independent
disorder-induced terms �
L,0 and �
R,0 into �L and �R, re-
spectively. The operators 
d,k �d=L ,R , k=0,x ,y ,z� defined
above are the many-body generalizations of the single-
particle operator 
̃k defined in Eq. �7� but in Eq. �10� and
henceforth we suppress the tilde for simplicity. We empha-
size that the disorder-induced valley-Zeeman fields bL
= �bL,x ,bL,y ,0� and bR= �bR,x ,bR,y ,0� are different in general,
since the electrons on the left and right dot interact with a
different set of impurities and therefore feel different disor-
der configurations. This feature is reminiscent of hyperfine
interaction in conventional semiconductor DQDs, and will
play a critical role in all the results we present in the forth-
coming sections.

The system is in the spin-valley blockade regime if the
available charge configurations for transport are the �1,1�,
�0,2�, and �0,1� configurations �in general, these numbers
might refer to the occupations in addition to completely filled
shells, see below�. In this situation, the only relevant param-
eter of Hpot+He-e is the energy difference �or “detuning”� �
of �1,1� and �0,2� states: �=�L−�R+U�−U. All results pre-
sented in this work correspond to zero detuning, �=0, im-
plying that the actual values of �L, �R, U, and U� do not
affect our results. However, since in the following we neglect
hybridization with �1,0� and �2,0�, we implicitly assume that
t / �U−U��= t / ��L−�R��1.

Motivated by the experiments we try to model here, we
consider the case of an axial magnetic field: B= �0,0 ,B�. In
the CNT QD studied by Kuemmeth et al.19 a spin g factor
gs�2 and a valley g factor gv�50 have been found. How-
ever, the results we present in this work are insensitive to
these values, because �at least in the parameter regimes under
consideration here� �i� spin-Zeeman splitting do not affect
the dynamics and �ii� we plot the magnetotransport curves
against the field-induced valley splitting �v=gv�BB and not
against the field B itself.

Our constant-interaction approximation has the advantage
of simplicity but also has the drawback that it does not ac-
count for the recently predicted Wigner-molecule formation
effect.7–9 This restricts the applicability of our model to �i�
short quantum dots, where the confinement energy exceeds
the interaction energy, or �ii� DQD systems where the envi-
ronment �the metallic gate electrodes or the dielectric sub-
strate, for example� provides a strong electrostatic screening
and hence weakens the electron-electron interaction. Wigner-
molecule formation implies a strong suppression of the
supersinglet-supertriplet gap in the �0,2� charge configura-
tion, which suppresses the Pauli blockade as well. The fact
that Pauli blockade has been observed20–22,29 in CNT DQDs

indicates that the samples used in those experiments are
closer to the constant-interaction regime than to the Wigner-
molecule regime, which is a further motivation for us to use
the constant-interaction model in our calculations.

Our Hamiltonian does not contain hyperfine interaction
and spin- or valley-flip interdot tunneling matrix elements,
although hyperfine interaction43,44 and spin-orbit-induced
spin-flip tunneling45,46 have proven to be important in the
understanding of spin blockade experiments in conventional
semiconductor quantum dots. We neglect hyperfine interac-
tion in this work because theoretical estimates indicate that
its characteristic energy scale is below 5 neV even for fully
13C-enriched samples6,10,47�, being small compared to other
relevant energy scales in our system i.e., spin-orbit splitting
�100 �eV, disorder �10 �eV, interdot tunneling, and val-
ley splitting � �eV, see forthcoming sections. Note that
recent experiments21,22 indicate a two orders of magnitude
larger hyperfine energy scale than the theoretical estimates,
and therefore we cannot be conclusive about the relevance of
this effect. Experiments in GaAs and CNT DQDs have
shown that hyperfine coupling becomes especially relevant at
suppressed interdot tunneling or large detuning, therefore our
model excluding this mechanism might not be adequate in
that regime.

Spin-orbit-induced spin-flip interdot tunneling could in
principle be present in our system, but only between states
having a �1 difference in their circumferential quantum
number, as it can be deduced from Eqs. �31�–�33� of Ref. 5.
This possibility is not ruled out in some of the spin-valley
blockade transport experiments22 as those were not per-
formed in the actual �1,1�-�0,2�-�0,1� regime �which would
imply that in both dots the electrons occupy the lowest-
energy circumferential mode of the CNT and therefore spin-
flip tunneling is forbidden�. For example, in the �4n+1,4m
+1�− �4n ,4m+2�− �4n ,4m+1� regime the spin-valley block-
ade could take place “on top of” n�m� filled shells in the left
�right� dot. However, we postpone the analysis of spin-flip
tunneling for future work and in Sec. IV we demonstrate that
agreement with experimental results can be obtained from
our model even though spin-flip tunneling is not taken into
account.

B. Generalized master equation

We apply the master-equation formalism to describe the
transport process through the serially coupled DQD system.
The DQD charge configurations which are relevant for the
transport process considered here are the �1,1�, �0,2�, and
�0,1� configurations. Hence the state of the DQD system is
described by the 26�26 density matrix �, where the Hilbert
space is spanned by 16 states in the �1,1� charge configura-
tion, six states in the �0,2� charge configuration, and four
states in the �0,1� configuration. The time dependence of � is
governed by the generalized master equation or Lindblad
equation

�̇ = −
i

�
�HDQD,�� + D� . �11�
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The dissipative term D� describes the tunneling events to
and from the DQD, characterized by the rates �L and �R,
respectively. It has the following form:

D� = �L

vs
	dLvs

† �dLvs −
1

2
�dLvsdLvs

† −
1

2
dLvsdLvs

† �

+ �R


vs
	dRvs�dRvs

† −
1

2
�dRvs

† dRvs −
1

2
dRvs

† dRvs�
 .

�12�

Here the creation and annihilation operators are restricted to
the charge configurations participating in the transport pro-
cess.

C. Secular approximation

We assume that the splittings between the eigenvalues of
HDQD are larger than the level broadenings set by the tunnel-
ing energies h�L and h�R. This allows us to use the so-called
secular approximation,56 i.e., to assume that the steady-state
density matrix is diagonal in the eigenbasis of HDQD. Hence
the generalized master equation simplifies to a steady-state
classical master equation �CME�,

0 = �̇� = − ���R

j

pj� + �L

j

� jr�j , �13a�

0 = �̇i = − �i�L

�

r�i + �R

�

��pi�. �13b�

Here � ,�=1, . . . ,22 �i , j=1,2 ,3 ,4� refers to the two-
electron �single-electron� DQD energy eigenstates, ��=���

and �i=�ii, and

r�i = 

vs

��i�dLvs����2, �14a�

pi� = 

vs

��i�dRvs����2. �14b�

D. Eliminating (0,1) states from the classical master
equation

The Hamiltonian has a block-diagonal structure: the two-
electron ��1,1� and �0,2�� and single-electron �0,1� blocks are
uncoupled. However, the Lindblad terms do couple these
sectors because they describe single-electron tunneling onto
and from the DQD. The coupling is appearing in the CME in
the form of the rates �Lr�i and �Rpi�.

Throughout this analysis, we consider the case �L��R.
The reason is that in the spin-valley blockade regime the
characteristic scale of the rates �Lr�i are largely independent
of the spin and valley physics inside the DQD, whereas the
rates �Rpi� are sensitive to those, so in order to have the
transport via the DQD sensitive to spin and valley effects,
the outgoing rates �Rpi� should provide the transport bottle-
neck.

We claim that in this limit �R /�L→0, the steady-state
CME is reduced to a homogeneous linear set of equations

M�=0 for the vector �= ��1 ,�2 , . . . ,�22� which contains the
diagonal elements of the two-electron sector of the DQD
density matrix �, and the normalization condition 
���=1.
The coefficient matrix M is given as

M�� = 

j 	 r�jpj�



�

r�j

− ���pj�
 . �15�

The proof of this statement is a straightforward calculation
starting from the steady-state CME in Eq. �13�.

Having the steady-state occupation probabilities �� and
the corresponding energy eigenstates ��� at hand, we calcu-
late the current as the average decay rate of the two-electron
states with respect to the steady-state distribution,

I = e�R

�

��

j

pj�. �16�

IV. STRONG SPIN-ORBIT COUPLING

In this section, we describe the spin-valley blockade effect
in a CNT DQD in the case when spin-orbit coupling domi-
nates the energy spectrum over disorder, interdot tunneling,
and magnetic-field-induced spin and valley splitting, i.e.,
�SO�b , t ,�v ,�s. Here b denotes the typical energy scale of
the disorder-induced valley-Zeeman fields on the two dots.
The main result of this section is that we identify a parameter

regime �t�
b−

2

�SO
, where b−

2 =bL
2 −bR

2� where the current as the
function of magnetic field �the “magnetotransport curve”�
shows a dip around zero field, and the width of the dip is
controllable by the interdot tunneling amplitude t. This field-
induced increase in the current is in qualitative agreement
with experiments.21,22 We interpret this result using Löwdin
perturbation theory,57 and provide an analytical formula for
the current which can be well fitted to the numerical results
using a single fitting parameter, the average number of trans-
mitted electrons between two blocking events.58 In the fol-

lowing, we describe the case t�
b−

2

�SO
. In Appendix A, we

argue that the findings of this regime can be extended to the

regime t�
b−

2

�SO
as well, and in Appendix B we show that they

do not hold if t�
b−

2

�SO
.

We start our analysis by presenting the numerical results
for this regime. In Fig. 3, we show the current as a function
of the magnetic-field-induced valley splitting �v, for a fixed
value of spin-orbit coupling �SO and disorder-induced valley
fields bL and bR �see caption� but different values of interdot
tunneling t. All parameters have a realistic order of
magnitude.19,21 �Note that the Zeeman spin splitting �s plays
no role in the transport process, see below.� In qualitative
agreement with recent experiments,21,22 the data in Fig. 3
shows a zero-field dip in the current, and the width of the dip
is controlled by the interdot tunneling t. In all the three cases
displayed, the ratio of the zero-field current I0� I�B=0� and
the maximal current Imax is Imax / I0�1.5. This ratio agrees
well with that observed experimentally in Ref. 21 �see Fig.
3�a� therein�, however, in Ref. 22 a ratio of Imax / I0�50 has
been found �see Fig. 3�e� therein�. Below we argue that the
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factor Imax / I0�1.5 we deduce from Fig. 3 is a rough upper
bound for this quantity in the parameter regime under con-
sideration, and therefore we conclude that our results �i�
agree very well with the measurement of Ref. 21, and �ii�
match the measurement of Ref. 22 only qualitatively, which
might be due to mechanisms missing from our model or
sample parameters in the experiment not fitting into the pa-
rameter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Sec. VI. In the re-
maining part of this section, we provide an interpretation of
the numerical results shown in Fig. 3 and derive an analytical
formula for the current using Löwdin perturbation theory.

The transition rates in the classical master equation �Eq.
�13�� are determined by the eigenstates of the two-electron
Hamiltonian. To provide an interpretation of the numerical
results, we will describe those energy eigenstates using per-
turbation theory. We start with the two-electron Fock basis
based on the single-particle states �K↑, �K�↓ and �K↓, �K�↑
�the pairs are energetically separated by the spin-orbit energy
�SO at zero field, see Eq. �9��. The �1,1� states are denoted in
the form �K↑ ,K�↑� whereas the �0,2� states in the form

�0,K↑K�↑�. We perform a basis transformation in order to
obtain basis states which are eigenstates of the two-electron
spin-orbit Hamiltonian �Eq. �10d�� and have well-defined su-
persinglet or supertriplet character at the same time. This
new basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set of
unperturbed states in our perturbation calculations.

An important simplifying observation is that even in the
presence of spin-orbit coupling and a magnetic field parallel
to the nanotube axis, the axial component of the electron spin
Sz is conserved. This allows us to separate the 22 states of the
two-electron basis to three uncoupled spin subspaces �see
columns in Table I�: five states which are spin polarized with
a polarization aligned with the z axis �up-spin states�, five
states which are spin polarized with a polarization anti-
aligned with the z axis �down-spin states�, and 12 states hav-
ing mixed spin states. As the three different spin subspaces
shown in the columns of Table I are not coupled by any
terms in the Hamiltonian, the Zeeman spin splitting �s plays
no role in the transport process. Besides their spin state, our
unperturbed states can also be classified according to their
spin-orbit energy. Five �five� of those have a spin-orbit en-
ergy �SO �−�SO�, and 12 have a vanishing spin-orbit energy
�see rows in Table I�.

To visualize the matrix elements of the Hamiltonian, in
Fig. 4 we show the level diagram of the unperturbed basis
states we introduced in Table I. The horizontal arrangement
of the states reflects the charge configuration, and the vertical
arrangement reflects the spin-orbit energies. Red/gray lines
denote supertriplet states and black lines denote supersinglet
states. The green/light gray �blue/dark gray� arrows corre-
spond to off-diagonal elements of the Hamiltonian in this
basis, induced by disorder �interdot tunneling�.

In the polarized spin subspaces �Fig. 4�a��, the high- and
low-energy �1,1� states �dashed lines in Fig. 4�a�� are
coupled to the �0,2� state via disorder and tunneling, result-
ing in a small decay rate at small fields ��v��SO�,

�s,� = �s	1 � 2
�v

�SO

−4

, �17�

where the � sign refers to the up-spin and down-spin sub-

spaces, respectively, �s=
t2ba

2

�SO
4 �R��R and ba=bL−bR. Here

∆v [µeV]

I

eΓR t = 5µeV, 4×

t = 10µeV, 1.5×

t = 15µeV

�

�
� � � � �

� � � � � � � � � � � � � � � � � �� �
�
�
� �

� � �
� � � � � � � � � � � � �

� � �� � �
� �

� �
� �

� �
� � �

� � � � �
� � � � � �
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FIG. 3. �Color online� Numerical results for the current as a
function of magnetic-field-induced valley splitting for different val-
ues of interdot tunneling �shown�. Further parameters: �SO

=250 �eV, bLx=20 �eV, bLy =10 �eV, bRx=80 �eV, bRy

=0 �eV, and therefore b−
2 /�SO=23.6. Points: numerical data.

Curves: the analytical formula �23� fitted to the numerical data with
n� as the single fitting parameter. Lower two data sets are scaled as
shown.

TABLE I. The 22 basis states used for perturbation calculations in the presence of strong spin-orbit
coupling. The six �1,1� states involving a minus sign are supersinglets, the ten further �1,1� states are
supertriplets. The six �0,2� states are supersinglets.

Spin-orbit energy Up-spin �Sz=+1� Down-spin �Sz=−1� Mixed spin �Sz=0�

�SO �K�↑ ,K�↑� �K↓ ,K↓�
1
�2

��K↓ ,K�↑�� �K�↑ ,K↓��
�0,K↓K�↑�

0
1
�2

��K↑ ,K�↑�� �K�↑ ,K↑��
�0,K↑K�↑�

1
�2

��K↓ ,K�↓�� �K�↓ ,K↓��
�0,K↓K�↓�

1
�2

��K↑ ,K↓�� �K↓ ,K↑��
�0,K↑K↓�

1
�2

��K�↑ ,K�↓�� �K�↓ ,K�↑��
�0,K�↑K�↓�

−�SO �K↑ ,K↑� �K�↓ ,K�↓�
1
�2

��K↑ ,K�↓�� �K�↓ ,K↑��
�0,K↑K�↓�

SPIN-VALLEY BLOCKADE IN CARBON NANOTUBE… PHYSICAL REVIEW B 82, 155424 �2010�

155424-7



and hereafter the decay rate of a two-electron state � is
meant to be the sum of the four transition rates into the four
different �0,1� single-electron states, i.e., 
 j=1

4 pj�. In the up-
spin �down-spin� subspace the decay rate increases �de-
creases� as the magnetic field increases because the magnetic
field pushes the high- and low-energy states closer to �away
from� the zero-energy �1,1� and �0,2� states, cf. Eq. �10f�.
The decay rate �s is fourth order in small parameters, there-
fore we call these four states �i.e., the high- and low-energy
up-spin and down-spin states� “blocked.”

To describe the energy eigenstates in the spin-polarized
zero-energy subspace, conventional degenerate perturbation
theory is not applicable since the perturbative hybridization
of the �1,1� supertriplet state with the �1,1� supersinglet
would include a zero-energy denominator. Therefore, we ap-
ply Löwdin perturbation theory59 to derive an effective
Hamiltonian for the zero-energy spin-polarized subspace. At
zero field, we obtain

H0,� =� 0 �
b−

2

�SO

0

�
b−

2

�SO

0 �2t

0 �2t 0
� . �18�

In H0,�, the first index refers to the zero-energy subspace and
� to the up-spin and down-spin subspaces. The effective
Hamiltonian H0,� corresponds to the following ordering of
the basis states: �1,1� supertriplet, �1,1� supersinglet, �0,2�
supersinglet. Remarkably, H0,� is independent of the angle
between the two disorder-induced valley fields in the double

dot. From Eq. �18� and our assumption
b−

2

�SO
� t, it follows that

the three basis states are completely mixed, and each of them
acquires a decay rate ��R. Therefore with respect to the
spin-polarized subspaces, we conclude that in the regime
considered in this section, the ten energy eigenstates can be
divided to a set of four blocked states decaying with slow
rates �s,���R, and six unblocked states which decay orders-
of-magnitude faster �with rates ��R� than the blocked ones.

Now we extend this analysis to the 12-dimensional
mixed-spin subspace �Fig. 4�b��. In the high- and low-energy
mixed spin subspaces the effective Hamiltonian, we obtain is
�common diagonal elements are omitted�,

H�,0 =�
0 −

2b−
2�v

�SO
2 − 4�v

2 0

−
2b−

2�v

�SO
2 − 4�v

2 0 �2t

0 �2t �
b−

2�SO

�SO
2 − 4�v

2

� .

�19�

Here the ordering of states is analogous to that in Eq. �18�,
and the first index of H�,0 refers to the high- or low-energy
subspace whereas the second index refers to the mixed spin
subspace. At zero field, the valley splitting is �v=0, imply-
ing that the first basis state, i.e., the �1,1� supertriplet is un-
coupled from the other two states, in particular, from the
�0,2� supersinglet. Therefore, at zero field the high- or low-
energy �1,1� supertriplet state �dashed lines in Fig. 4�b�� can
decay only due to its perturbative coupling �via disorder and
tunneling� to the two zero-energy �0,2� supersinglets. From
Löwdin theory, we infer that the decay rate of the high- and
low-energy �1,1� supertriplets due to these processes is

�s,0 =
1

2
��s,+ + �s,−� , �20�

and therefore these two states are blocked in the sense de-
fined above. However, according to Eq. �19�, a finite valley
splitting �v induces mixing between the two �1,1� states.
This mixing provides an additional decay channel for the
�1,1� supertriplet state with a rate

�c =
2b−

4�v
2

t2��SO
2 − 4�v

2�2�R, �21�

inferred using standard perturbation theory in the field-
induced coupling term. This rate becomes much faster than
the slow rate �s,0 if the field is strong enough to ensure �v

�
t2ba

�2b−
2 . In conclusion, we have found that in both the high-

and low-energy mixed spin subspace the total decay rate of
the �1,1� supertriplet state �s,0+�c changes dramatically as
the magnetic field is turned on: at zero field these two states
are blocked, having the slow decay rate �s,0 whereas at finite
field their decay rate grows with orders of magnitudes.

In the six-dimensional zero-energy mixed spin subspace,
the order of magnitude of the decay rates is not influenced by
the magnetic field. Each of these states decay fast compared
to the slow rate �s. This can be derived in the same way as
shown at the discussion of the zero-energy spin-polarized
subspace and Eq. �18�.

Using the explicitly calculated decay rates, we can set up
a semiphenomenological analytical formula for the current.
To this end, we regard the transport process as an alternation
of charge transfer “bursts” �subsequent occupation of un-
blocked states� and blocking events �due to occupying one of
the blocked states�. We assume that a burst corresponds to a

∆so

−∆so

0

(1, 1) (0, 2)a) (0, 2)(1, 1)b)
×2

×2

×2×2×2

FIG. 4. �Color online� Unperturbed two-electron states �lines�
and their energies in a CNT DQD at strong spin-orbit coupling and
zero magnetic field �cf. Table I�. Horizontal arrangement of the
states reflects charge configuration and vertical arrangement reflects
spin-orbit energies. Red/gray lines: supertriplet states. Dashed red/
gray lines: blocked supertriplet states. Black lines: supersinglet
states. Green/light gray �blue/dark gray� arrows correspond to off-
diagonal elements of the Hamiltonian, induced by disorder �interdot
tunneling�. �a� Up-spin and down-spin states. The indicated �2
degeneracy corresponds to the two possible spin configurations.
Different spin species are uncoupled. �b� Mixed-spin states.
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transfer of n� electrons on average, i.e., n� is not necessarily
integer.58 Since the charge bursts happen fast compared to
the time spent in a blocked state, the average time between
two subsequent bursts can be estimated as the average of the
decay times of the six blocked states, i.e.,

Tburst �
1

6
�2�s,+

−1 + 2�s,−
−1 + 2��s,0 + �c�−1� . �22�

As a burst transfers n� electrons on average, the current can
be expressed as

I �
en�

Tburst
. �23�

Equation �23�, together with Eq. �22� and the decay rates
calculated above, provides an analytical expression for the
current as a function of the parameters of the Hamiltonian
and �R, having a single phenomenological parameter n�. We
have fitted this analytical result using n� as the single fitting
parameter to our numerical results �Fig. 3�, and we have
found n��3.2 irrespective of the value of tunneling ampli-
tude t. As seen in Fig. 3, this value of n� gives an excellent
agreement between our numerical and analytical results in
the considered range of magnetic field. By repeating the nu-
merical calculations and the fittings for various disorder con-
figurations we generally find good agreement between nu-
merics and analytics. The values we obtain for n� are
typically between 1.4 and 5.2, indicating that n� is not uni-
versal but depends on the details of the Hamiltonian.

Our analytical result for the current enables us to qualita-
tively explain two characteristic features of the magne-
totransport curves shown in Fig. 3. One of those features is
the ratio Imax / I0�1.5. Evaluating the current according to
Eq. �23� at zero field, we find I0=en��s, whereas at high
field, where �c��s, we can neglect ��s,0+�c�−1 in Eq. �22�
and find Imax�en�6�s /4, resulting in the ratio Imax / I0�1.5,
in correspondence with our numerical results in Fig. 3 and
the experimental data of Ref. 21. For this estimate we ne-
glected the field dependence of the rates �s,� but taking that
into account could only lower the ratio Imax / I0. A second
feature observed in Fig. 3 is that the width of the zero-field
dip of the magnetotransport curve depends on the tunneling
amplitude t. This is explained by the fact that the crossing-
over rate in Eq. �21� depends on the tunneling amplitude as
�c�1 / t2, i.e., the stronger the tunneling, the “slower” the
crossover of �c as the magnetic field increases, and therefore
the wider the zero-field dip in the magnetotransport data. In
Appendix A we argue that the conclusions drawn in this

section for the case t�
b−

2

�SO
can be generalized to the regime

t�
b−

2

�SO
, and therefore the range of validity of our results is

actually t�
b−

2

�SO
.

Finally we point out a possible generalization of our re-
sults. In the system under consideration, the spin and valley
degrees of freedom play a symmetric role in the absence of
disorder and magnetic field, since the spin-orbit Hamiltonian
Hso�sz
z is symmetric in spin and valley, and the interdot
tunneling conserves both spin and valley. The results of this
section show that if disorder provides an inhomogeneous

valley-Zeeman field �coupled to 
x and 
y� in the DQD, then
the dynamics becomes independent of the spin-Zeeman split-
ting, and the magnetotransport curve shows a dip at zero
axial magnetic field. These results can be transferred to the
case when the role of spin and valley are exchanged: in the
hypothetic case of absence of disorder, an inhomogeneous
spin-Zeeman field, coupled to sx and sy but not to sz, e.g.,
coming from a perpendicular-to-nanotube-axis magnetic
field, would imply that the dynamics becomes independent
of the valley-Zeeman splitting, and the magnetotransport
curve would show a dip at zero axial magnetic field.

To conclude this section, solving the transport master

equation numerically, we have found that if �SO�
b−

2

�SO
� t and

�SO��v, then the magnetotransport curves show a zero-
field dip with a width that is controllable by the interdot
tunneling amplitude t, in agreement with a recent
experiment.22 Using Löwdin perturbation theory, we gave an
analytical formula for the current and based on that, a quali-
tative interpretation of the features of our numerical results.
We emphasize that the observed characteristic magnetotrans-
port pattern is due to the different disorder-induced effective
valley-Zeeman fields on the two quantum dots. Our theory
predicts a typical ratio of the finite-field and zero-field cur-
rents Imax / I0�1.5, which is in line with the experimental
result of Ref. 21, but different from that of Ref. 22, possibly
due to experimental sample parameters not fitting into the
parameter range studied here or mechanisms missing from
our transport model.

V. STRONG DISORDER

In this section, we describe the spin-valley blockade effect
in a CNT DQD in the case of strong disorder, weak interdot
tunneling and weak spin-orbit coupling �b� t ,�SO�. In recent
experiments on clean nanotube QDs, the spin-orbit splitting
of the fourfold-degenerate ground-state energy level has
been found significantly larger than the valley mixing energy
scale. However, in nanotubes with stronger impurity con-
tamination �larger radius� the disorder �spin-orbit interaction�
energy scale is expected to increase �decrease�, and the re-
gime considered in this section might be reached. A further
motivation to study this regime is its possible relevance for
certain silicon-52–55 or graphene-based quantum dots.4 In
those material systems, the spin-orbit interaction is expected
to be smaller than in CNTs but short-range disorder couples
valleys for the same reason as it does in CNTs.

As the main result of this section, we show that in the
parameter regime under consideration, the magnetotransport
curve shows a zero-field dip or peak depending on the dis-
order configuration. We find that at a given value of the
external magnetic field, the current is determined by three
parameters �if interdot tunneling t and emptying rate �R are
fixed�: the angle ��tot� between the two total valley-Zeeman
fields bL

�tot��bL+�vẑ /2 and bR
�tot��bR+�vẑ /2 on the two

dots, and the lengths of these valley-Zeeman fields bL
�tot� and

bR
�tot�. Our analysis is analogous to the derivation of the spin

blockade leakage current induced by hyperfine interaction in
GaAs double dots,44 with the most important difference be-
ing that in our case spin-independent disorder provides a
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blockade-lifting mechanism via the valley dynamics,
whereas in conventional spin blockade, the hyperfine inter-
action affecting spin dynamics is responsible for lifting the
blockade.

We start our analysis by presenting numerical results in
Fig. 5. The figure shows the magnetic-field dependence of
the current for two different disorder realizations. The two
curves are qualitatively different: one shows a zero-field dip
whereas the other shows a zero-field peak. In the following,
using standard perturbation theory and an approximative
analytical solution of the master equation we show that the
qualitative difference between the two curves is related to the
fact that the angle � between the disorder-induced valley-
Zeeman fields on the two dot differs for the two disorder
realizations.

We exploit the fact that the full Hamiltonian commutes
with the axial �z� component of the electron spin, and there-
fore one can identify four uncoupled spin subspaces of the
22-dimensional two-electron Hilbert space. It is beneficial to
choose a classification corresponding to the standard two-
electron spin-singlet and spin-triplet states �S�s, �T+�s, �T0�s,
and �T−�s �the outer lower index refers to “spin”�. Since these
four spin subspaces are uncoupled from each other, the spin-
Zeeman effect has no effect on the dynamics and therefore
from now on we disregard that.

In the absence of interdot tunneling, the energy eigen-
states of the single-electron Hamiltonian are trivial: in the
left dot they are �KL↑�, �KL↓�, �KL�↑�, and �KL�↓�, where �KL�
and �KL�� are defined as the eigenstates of the 2�2 matrix
bL

�tot� ·� corresponding to the eigenvalue bL
�tot� and −bL

�tot�, re-
spectively. Single-electron energy eigenstates of the right dot
are constructed accordingly. The two-electron energy eigen-
states are the standard Fock basis states constructed from
these single-electron states �as long as interdot tunneling is
zero�. The resulting 22 energy eigenstates are classified re-
garding their energy eigenvalue and spin state in Table II.

At this point, we make use of the fact that the magnitudes
of the total valley-Zeeman fields in the two dots are typically
different �since they have a random contribution induced by
the random arrangement of disorder�, and their difference is
typically comparable to themselves

bL
�tot� � bR

�tot� � bL
�tot� − bR

�tot�. �24�

Note that this condition can hold only if the magnetic-field-
induced valley-Zeeman field �v does not dominate over the
disorder-induced component, which restricts the validity of
the following analysis to the range �v�b. If the condition
�24� holds, then the separations between the seven energy
levels considered in Table II are on the order of b, which is
much larger than the interdot tunneling t, and therefore we
are allowed to treat t as a perturbation, and use the states
listed in Table II as the unperturbed states.

Due to tunneling, the �1,1� states �upper four rows in
Table II� perturbatively hybridize with �0,2� states �lower
three rows in Table II� and therefore acquire a finite decay
rate. As shown in Table II and Fig. 6�a�, in each of the three
spin-triplet subspaces there are four �1,1� states and they hy-
bridize with a single available �0,2� state. Standard perturba-
tion theory and Eq. �14b� gives two different decay rates,

�1T

�R
=

2t2 cos2���tot�/2�
�bL

�tot� − bR
�tot��2 , �25a�

�2T

�R
=

2t2 sin2���tot�/2�
�bL

�tot� + bR
�tot��2 . �25b�

The rate �1T ��2T� corresponds to the spin-triplet states in the
second and third �first and fourth� lines of Table II. In the
spin-singlet subspace, there are three �0,2� states to hybridize
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FIG. 5. �Color online� Numerical �dots� and analytical �lines�
results for the current as a function of magnetic-field-induced valley
splitting for two different disorder realizations. Parameters: t
=10 �eV, bLx=cos ��100 �eV, bLy =sin ��100 �eV, bRx

=200 �eV, and bRy =0 �eV. Circles: �=
 /4. Boxes: �=15
 /16.

TABLE II. The 22 basis states used for perturbation calculations in the presence of strong disorder.
Different columns correspond to different spin states and each row has a corresponding energy �left column;
spin Zeeman energies are neglected�. The upper four �lower three� rows contain the �1,1� states ��0,2� states�.

Energy �S�s �T+�s �T0�s �T−�s

bL
�tot�+bR

�tot� 1
�2

��KL↑ ,KR↓�− �KL↓ ,KR↑�� �KL↑ ,KR↑� 1
�2

��KL↑ ,KR↓�+ �KL↓ ,KR↑�� �KL↓ ,KR↓�
−bL

�tot�+bR
�tot� 1

�2
��KL�↑ ,KR↓�− �KL�↓ ,KR↑�� �KL�↑ ,KR↑� 1

�2
��KL�↑ ,KR↓�+ �KL�↓ ,KR↑�� �KL�↓ ,KR↓�

bL
�tot�−bR

�tot� 1
�2

��KL↑ ,KR�↓�− �KL↓ ,KR�↑�� �KL↑ ,KR�↑� 1
�2

��KL↑ ,KR�↓�+ �KL↓ ,KR�↑�� �KL↓ ,KR�↓�
−bL

�tot�−bR
�tot� 1

�2
��KL�↑ ,KR�↓�− �KL�↓ ,KR�↑�� �KL�↑ ,KR�↑� 1

�2
��KL�↑ ,KR�↓�+ �KL�↓ ,KR�↑�� �KL�↓ ,KR�↓�

2bR
�tot� �0,KR↑KR↓� �0,KR↑KR�↑� 1

�2
��0,KR↑KR�↓�+ �0,KR↓KR�↑�� �0,KR↓KR�↓�

0 1
�2

��0,KR↑KR�↓�− �0,KR↓KR�↑��
−2bR

�tot� �0,KR� ↑KR�↓�
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with, although each �1,1� state hybridizes only with two �0,2�
states �e.g., �KL↑ ,KR↓�− �KL↓ ,KR↑� is not coupled to
�0,KR� ↑ ,KR�↓� by tunneling�. Due to hybridization, the four
�1,1� spin-singlet states acquire two different decay rates,

�1S

�R
= 2t2� cos2���tot�/2�

�bL
�tot� − bR

�tot��2 +
2 sin2���tot�/2�
�bL

�tot� + bR
�tot��2� , �26a�

�2S

�R
= 2t2�2 cos2���tot�/2�

�bL
�tot� − bR

�tot��2 +
sin2���tot�/2�

�bL
�tot� + bR

�tot��2� . �26b�

The rate �1S ��2S� corresponds to the spin-singlet states in
the second and third �first and fourth� lines of Table II. We
emphasize that the valley dynamics of the spin-singlet sub-
space is remarkably different from the valley dynamics of
the spin-triplet subspaces and the spin dynamics in the spin
blockade of conventional semiconductor DQDs:43,44 in the
latter cases there is only a single available �0,2� state to hy-
bridize with, whereas in the former case there are three of
them.

From now on we are aiming at deriving an analytical
formula for the current in leading order in the small param-
eter t /b. As the next step toward that we argue that the
steady-state occupations of the �0,2� states are negligible.
There are two facts needed to prove this. �i� The steady-state
current can be separated to contributions from single-
electron tunneling via the �1,1� states and �0,2� states: I
=
���1,1�����+
���0,2�����. For the �1,1� states, decay
rates originate from a weak hybridization of the �0,2� states,
therefore in the first sum, ����t /b�2�R��R. For the �0,2�
states, decay rates come from direct coupling to the right
lead, hence in the second sum, ����R. �ii� The �0,2� states
are “difficult to load” and “easy to empty,” therefore, as it
can be shown rigorously, their steady-state occupations are
��t /b�4 whereas the occupations of the �1,1� states are �1.
As a result concerning the current, this means that the con-
tributions from the �1,1� states provide the leading-order re-
sult, and the �0,2� states can be eliminated from the classical
master equation �Eq. �15��.

The steady-state CME retrieved after the elimination can
be solved analytically using the ansatz

�� =
��

−1



����1,1�

���
−1

, �� � �1,1�� , �27�

which expresses that the occupation probability of a state is
proportional to the lifetime of that state. The fact that this
simple ansatz solves our classical master equation is a con-
sequence of the equivalence of the 16 �1,1� states in the
following sense: if one of those is filled randomly with a
uniform distribution, then after one transport cycle the occu-
pations are still uniformly distributed. Mathematically, the
16�16 “return probability matrix” of the �1,1� states

R�� = 

j��0,1�

r�j



��

r��j

pj�



j�

pj��

, ��,� � �1,1�� �28�

is doubly stochastic. The key observation in proving this is
that the row sums of the �1,1�→ �0,1� transition probability
matrix pj� /
 j�pj�� are equal, which is a consequence of the
vanishing detuning between �1,1� and �0,2� states. Note that
the connection between R and the coefficient matrix M of the
CME is

R�� = �	��� +
M��



k��0,1�

pk�
�
�,���1,1�

. �29�

Using the solution in Eq. �27� and the rates listed in Eqs.
�25� and �26�, we obtain an analytical formula from Eq. �16�
for the steady-state current through the DQD,

I = e
16

6��1T
−1 + �2T

−1� + 2��1S
−1 + �2S

−1�
. �30�

This analytical result is compared to numerical results in Fig.
5 and a good correspondence is found. Our analytical result
gives an insight on how the angle ��tot� influences the current:
at angles close to 0 and 
, i.e., at parallel and antiparallel
valley-Zeeman fields on the two dots, the current is sup-
pressed, since then either �1T or �2T is small and that makes
the denominator in Eq. �30� large. This qualitatively explains
the zero-field dip in Fig. 5 in the case of �=15
 /16: as the
magnetic field and hence �v is increased, the angle ��tot�

crosses over from 15
 /16 toward 0 �since the magnetic field
is enforcing alignment of bL

�tot� and bR
�tot��, starting from and

ending at suppressed current values, but sweeping through a
region of enhanced current.

Our conclusion of this section is that in the considered
regime the magnetotransport curve shows either a zero-field
dip or peak, depending on the disorder configuration. Al-
though our analysis in this section was based on the com-
plete absence of spin-orbit coupling and detuning between
�1,1� and �0,2� states, and a perfect alignment of the mag-
netic field and the CNT axis, we expect no qualitative
changes in the results in the case of weak spin-orbit interac-
tion and detuning �SO,��b and/or a small misalignment of
the field, since those factors have no effect on the tunneling

2b
(tot)
R

0

−2b
(tot)
R

(1, 1) (0, 2)

b
(tot)
L + b

(tot)
R

−b
(tot)
L + b

(tot)
R

b
(tot)
L − b

(tot)
R

−b
(tot)
L − b

(tot)
R

(1, 1) (0, 2)a)

Γ1T

Γ2T Γ2S

Γ1S

Γ1T

Γ2T

Γ1S

Γ2S

b)

spin triplets spin singlets

FIG. 6. �Color online� Two-electron states �lines� and their en-
ergies in a CNT DQD at strong disorder. Arrows denote tunnel
couplings between �1,1� and �0,2� states. Decay rates of �1,1� states
are indicated, cf. Eqs. �25� and �26� in text. Here bR

�tot��bL
�tot�. �a�

States and tunnel couplings in the five-dimensional spin-triplet sub-
spaces. The same plot refers to all three spin-triplet subspaces. �b�
States and tunnel couplings in the seven-dimensional spin-singlet
subspace. �cf. Table II�.
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amplitude and can only slightly modify our unperturbed ba-
sis states and the corresponding energies.

As discussed in Sec. IV, in recent experiments21,22 with
CNT DQDs a zero-field dip has been found with a dip width
controllable by the tunneling amplitude. In the analytical and
numerical results of this section, the width of the dip �pre-
dicted for certain disorder configurations� is insensitive to
the tunneling amplitude because t appears in the current as a
t2 prefactor only. Therefore, we conclude that the parameter
regime of the measurement was probably different from the
one considered in this section. This opinion is supported by
the facts that in Ref. 21 the ratio �SO /b�7 has been esti-
mated and that in Sec. IV, in a different parameter regime we
have found a qualitative agreement with experiments.

VI. CONCLUSIONS

We have found that in the regime of strong spin-orbit
interaction, the magnetic-field dependence of the leakage
current shows a zero-field dip with a width tunable by the
interdot tunneling amplitude t �Sec. IV�. We have shown that
the ratio of the finite-field and the zero-field current is typi-
cally Imax / I0�1.5. Both the trend in the magnetotransport
data �i.e., the zero-field dip� and the numerical value 1.5
agree well with those found in Ref. 21 �see Fig. 3�a� therein�.
In the measurement of Ref. 22 �Fig. 3�e� therein� the quali-
tative behavior is similar to our prediction, but a much larger
ratio, Imax / I0�50 has been found, which deviates signifi-
cantly from the prediction of our model. This deviation
might arise from the parameters of the measured sample not
fitting into the parameter regime considered in Section IV �In
Ref. 22, the values of spin-orbit interaction energy and
valley-mixing energy have not been estimated. Interdot tun-
neling has been quoted as t�50 �eV.� Another potential
reason for the deviation might be that certain features and
mechanisms possibly important in the spin-valley blockade
are excluded from our model. A relevant mechanism might
be the spin- and/or valley-relaxation due to electron-phonon
interaction or electron exchange with the leads.5,11,13,46,60 If
those relaxation rates are comparable to or larger than the
lead-dot tunneling rates then they could affect the transport
properties. Another possibly influential effect disregarded in
our model might be the emergence of strongly correlated
Wigner-molecule-like states due to the strong electron-
electron interaction in nanotubes,7–9 which would imply the
rearrangement of the energy level structure shown in Table I
and Fig. 4 and therefore could lead to a qualitatively differ-
ent transport behavior.

We have studied the influence of disorder on the spin-
valley blockade in the case of small spin-orbit interaction,
where the dominant energy scale is that of the short-range
disorder �Sec. V�. In this regime, the leakage current can
show a zero-field dip or peak, depending on the disorder
configuration. Although we are not aware of any measure-
ments carried out in this regime, we think that our results
might be relevant for future experiments on graphene- and
silicon-based double quantum dots.

Our QD model incorporating the valley-mixing effect due
to disorder can serve as a starting point for future theoretical

work on CNT QDs. The fact that the valley-mixing effective
Zeeman field depends on the electronic wave function and
the disorder configuration felt by the electron implies that
this valley-Zeeman field changes as the electron is replaced.
This feature might allow for resonant electronic valley ma-
nipulation similar to recent spin manipulation experiments in
conventional semiconductor QDs using spin-orbit coupling35

and hyperfine interaction.36 Note that in clean nanotubes,
such resonant techniques do not require a magnetic field
since the two valley states having the same spin are split by
the spin-orbit splitting even at zero field. A further possible
application of our model could be to describe the pulsed-gate
experiments of Churchill et al.21 which intended to infer re-
laxation and decoherence times of two-electron spin-valley
states in a nanotube double dot. As those results have been
obtained using isotope-enriched samples, incorporating the
spin- and valley-mixing hyperfine interaction10 might also be
necessary.

In conclusion, we have found that spin-independent short-
range disorder in carbon nanotube double quantum dots can
lift the spin-valley blockade. In our transport model, we ac-
count for valley degeneracy, spin-orbit energy splitting, and
disorder-induced valley mixing, which are characteristic fea-
tures of nanotube quantum dots distinguishing them from
their counterparts in conventional semiconductors. The main
result of this work is that in the regime of strong spin-orbit
interaction our model predicts a zero-field dip in the
magnetic-field dependence of the leakage current, with a dip
width tunable by the height of the interdot tunneling barrier.
This behavior is in accordance with recent experiments. Our
analysis for the regime of strong disorder, which has possible
relevance for graphene- and silicon-based double quantum
dots, predicts that the magnetotransport shows either a zero-
field dip or peak depending on the disorder configuration.

Note added in proof. After completion and submission of
this work we became aware of two related theoretical
studies,61,62 which focus on spectral properties of perfectly
clean �disorder-free� CNT DQDs. The work of von Stecher et
al.61 also describes the effect of strong correlations on trans-
port in the Pauli blockade regime. The purpose of the present
work is to account for disorder-induced effects in the spin-
valley blockade, which makes it distinct from Refs. 61 and
62.
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APPENDIX A: STRONG SPIN-ORBIT COUPLING

AND
b−

2

�SO
š t

We have shown in Sec. IV that in the regime of strong

spin-orbit interaction and
b−

2

�SO
� t, the magnetotransport curve

develops a zero-field dip with a width which is controllable
by the tunneling amplitude t. Here we argue that the above
condition can be relaxed and the same statement is true in the

regime
b−

2

�SO
� t �provided �SO�b , t ,�v�.

ANDRÁS PÁLYI AND GUIDO BURKARD PHYSICAL REVIEW B 82, 155424 �2010�

155424-12



We recall that in Sec, IV we have found that at zero field
six out of the 22 two-electron states are blocked, and two out
of those six show a blocked-unblocked crossover as the mag-
netic field is switched on. We have determined the field-
dependent decay rates of these six states without using the

assumption
b−

2

�SO
� t, therefore those results hold in the current

case
b−

2

�SO
� t as well.

The effective Hamiltonians in Eqs. �18� and �19� are also
valid in the current case. However, from this point there is an
important deviation in the procedure compared to Sec. IV. In
the zero-energy spin-polarized subspaces �described by H0,�
in Eq. �18��, the three basis state does not mix evenly but
instead the �1,1� supertriplet and supersinglet states hybridize
strongly with each other and these hybridized states them-
selves hybridize only weakly with the �0,2� supersinglet via

tunneling. This leads to decay rates �
�SO

2 t2

b−
4 �R��R �in con-

trast to Sec. IV where these rates were found to be ��R�. An
important point is that if ba�b−, which is typically true due
to the random nature of the disorder-induced valley fields bL

and bR, then the decay rate �
�SO

2 t2

b−
4 �R is still orders-of-

magnitude larger than the decay rate �s of the blocked states,
and therefore these states can still be considered as un-
blocked. The same argument applies for the six states in the
zero-energy mixed-spin subspace, therefore each of those
can be classified as unblocked.

From these results we conclude that in the case
b−

2

�SO
� t the

set of blocked states �which determine the character of the

magnetotransport curve� and the form of their decay rates are

the same as found in the regime
b−

2

�SO
� t, and hence the con-

clusions drawn there hold here as well. This finding is con-
firmed by numerical calculations �not shown�.

APPENDIX B: STRONG SPIN-ORBIT COUPLING

AND
b−

2

�SO
™ t

Here we argue that the zero-field magnetotransport dip,
discussed in Sec. IV and Appendix A, gets smeared out if the

tunneling amplitude is increased to the regime
b−

2

�SO
� t such

that t�b−
��SO /ba. �The latter condition is stronger than the

former one provided that bL�bR and therefore ba�0.� As
before, we restrict the discussion to the strong spin-orbit cou-
pling regime: �SO�b , t ,�v.

As pointed out in the analysis after Eq. �19�, the blocked-
unblocked crossover of the high- and low energy mixed-spin
supertriplets, which gives rise to a zero-field dip in the mag-
netotransport, occurs around the magnetic field where �v

=
t2ba

�2b−
2 . This implies that if t�b−

��SO /ba, then the crossover
would take place only in the high-field regime �v��SO and
not in the low-field regime �v��SO under consideration. As
a consequence, the character of the low-field magnetotrans-
port curve will be determined by the field-induced evolution
of the slow decay rates, resulting in a parabolic peak around
zero field. This finding is confirmed by numerical calcula-
tions �not shown�.
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