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0.1 Motivation

For a long time the speed of calculations doubled every 18 month, according to
Gordon Moore [4]. Nevertheless the classical transistor-based computing method
reaches its limits in some essential operations. It has been shown that operations
based on the non-classical interaction between spins [2] lead to a speed-up in a lot of
calculations (an important example is factoring). Quantum computing also gives the



possibility of calculations which are classically too expensive or not even possible (i.e.
Deutsch-Josza-Problem, see [3]). In the following I want to give a short overview
on one of the most promising techniques in the topic of quantum calculation - the
solid state systems. Thereby I will concentrate on systems of spin-qubits.

0.2 Overview

After a short outline, why spin systems are one of major interest in todays research, we will
have a look on a concrete implementation. Then the model needed to describe the interaction
in this system is introduced. In the second section we will have a closer look on the exchange
energy. In the third section we will see how quantum operations can be achieved in our system
by controlling the exchange interaction. Last it will be shown how we can implement a quantum
gate by using the field-dependence of the exchange energy, calculated in the third section. In the
end a short overview of real experiments will be given. Basic knowledge of quantum mechanics
presumed. This work closely follows chapter 24 of ref. [1].

1 Introduction

An essential property of an candidate for a quantum-computer is that the coherence time (i.e. the
time over which α |1〉+ β |2〉 is well defined) of the qubit-system is larger than the time which is
needed to perform calculation operations. To be sure it is also necessary to have an exact control
of the qubits to perform operations. And, to have the possibility of gaining a quantum computer
device later on, the system has to be scalable to large numbers of qubits. As so often it is hard
to fulfill all of these requirements perfectly with one system. But great expectations are held
for solid state systems, because they are well-known and have been well researched over the last
century and, for sure, it is much easier to handle solid state systems than ions in a trap or solved
molecules. One of the most interesting systems is a spin-1/2-qubit-system. These systems are
very well known and can be described by quantum mechanics. Semiconductor systems are one
example, in which a 2-dimensional electron gas exists with a very long coherence time, compared
to the time needed to perform calculations (i.e. in GaAs around 1µs). The construction of such
semiconductor systems requires very exact growth techniques, but it is generally based on todays
technology, which makes it very interesting for application. So therefore we will concentrate in
the following on spin-1/2-systems.

We now focus on one of the most important spin-1/2-system, namely a quantum dot system
in a semiconductor heterostructure as shown in fig. 1.



Figure 1: Scheme of quantum dots in a semiconductor heterostructure: between the GaAs-layer
(labeled a) and the AlGaAs-Layer (labeled a’) exists a 2-dimensional electron gas (b).
In a very localized area an electron (labeled 1)is trapped by the use of two gates (2 -
split gate, 3 - potential barrier gate). The interaction between two dots is controlled
via voltage applied on these gates. Because of a magnetic field perpendicular to the
plane there exists a particular direction for the spin.

Two of these quantum dots are interacting by tunnel coupling. Because it has been shown
[1] that all essential (and known) operations can be realized with two qubits, only the next
neighbour coupling is of interest. To simplify life, we will only look at a system of 2 qubits in the
following, which is, as shown above, no restriction for quantum operations. In an 2-qubit-system
there exist four different states |↑↑〉 , |↓↓〉 , 1√

2
(|↓↑〉+ |↑↓〉) , 1√

2
(|↓↑〉 − |↑↓〉). There is an energy

splitting between the singlet and the three triplet states due to the excitation operator, as shown
in fig. 2.

Figure 2: Energy-splitting of the quantum dot in a singlet (ground-) state and a triplet (excited-)
state.

If we now want to write down the Hamiltonian for the two qubit-system, we first need the
Hamiltonian for one particle, which looks like

h(ri,pi) =
1

2meff

(
pi −

e

c
A(ri)

)2

+ eri ·E + V (ri)

where A(ri) ⊥ ẑ is the vector potential and E ‖ x̂ the electric field and V (ri) the potential cre-
ated by the gates around the two quantum dots, which has the form V (ri) = meff ω0

2

(
1
4a (x2 − a2)2 + y2

)
.

An example is shown in fig 3.



Figure 3: double minima potential created by the gates on top of the GaAs-heterostructure,
which restricts the quantum dot to a certain area and gives by the high of the
inner well the strength of the interaction between the two dots. It can locally be
approximated as an harmonic potential (doted lines).

This double-well-potential can be approximated as a harmonic potential near each of the two
minima. The well between those is inversely proportional to the coupling strength of the tunnel
coupling between the two dots. To derive the total Hamiltonian we now have to sum over
both particles, consider the interaction between both and add another term due to the Zeeman
coupling (which we have ignored until now) between the spins and the magnetic field from the
gates. This leads us to the following Hamiltonian

Htot =
2∑

i=

h(ri,pi) +
e2

ε |r1 − r2|
+ µB

2∑
i=1

giBi · Si

where e2

ε|r1−r2|comes from the Coulomb-interaction and Biis the magnetic field on spin Si.
Of course we still have the double-well-potential in each single particle operator. We still have
in mind the energy splitting. If we now tune the barrier between the two dots, we can control
whether the system is in the singlet or triplet state. This control will be the essential part for
applying quantum operations to our system, which will be shown in the following chapter.

2 Implementation of quantum operations

The first step we have to take, is to find an easy description of the interaction between the
two spins. As mentioned above it is a tunnel coupling. The most easy description therefore
is given by the Heisenberg model. By the way the question occurs: why we should have a
closer look on the spin-spin-interaction while there is no spin-spin-term in our total Hamiltonian
(see 1). Bring to mind the description of an H2-molecule: inderiving the quantummechanical
description, one has to pay attention to the indistinguishability of the electron, which then leads
to spin-spin-effects. The Heisenberg Hamiltonian has the form

HHei =
∑
i,j

Jij(t)SiSj − µB

∑
k

gkBk(rk) · Sk

whereby our parameter to tune is now the exchange energy Jij(t)which is just the energy-
difference between singlet and triplet state: Jij(t) = Eij

singlet − Eij
triplet.

So we need to calculate this energy difference. Therefor we use the so called Heitler -
London-approach [1] which was originally developed in 1927 for the calculation of H2-molecules
and is a good approximation for weak spin-spin interactions (for example for large distances



between quantum dots) and is easy to calculate. We now have to make several approximations.
First, we will focus on ground states from now on. An we consider the Coulomb interaction
so strong that the electrons do not come near each other, which essentially means we have only
one electron per dot. And we will neglect the spin-field coupling from now on. Then we arrive
at reduced Hamiltonian:

Hred =
2∑

i=1

h(ri,pi) +
e2

ε |r1 − r2|

With this Hamiltonian it is much easier to calculate the wave function which fulfills the
Schrödinger-equation. We will skip the detailed calculation, which results in

|ψ±〉 =
|12〉 ± |21〉√
2(1± U2)

where U = 〈2|1〉 is the overlap of the wave-functions. Because we now only have the ground
state, we do not have any energy-splitting. But we consider our reduced solution as a good
approximation for the true wave function and therefore calculate the energies for singlet- and
triplet-state with these wave functions |ψ±〉 and our total Hamiltonian from above (1). Then
the energies are

Esinglet = 〈ψ−|Htot |ψ−〉
Etriplet = 〈ψ+|Htot |ψ+〉

The difference is then the searched for exchange-energy.
If we now calculate this expression explicitly, we gain information about the dependencies of

Jij . Despite this term being rather nasty, we will have a closer look at it. The exchange energy
is given by

J = A
(
c
√
b

(
I0(bd2)e−bd2

− I0(d2b− d2

b
)ed2(b− 1

b )

)
+

3
4b

(
1 + bd2

) )
where A ∼ 1

sinh(2d2(2b− 1
b ))

, c is the ratio of the Coulomb-energy to the confining energy
and I0 is the first Bessel-function, d the distance, normalized with the Bohr-radius and b the
normalized frequency, which depends on the applied magnetic field. We will now discuss the last
three terms in detail. Obviously the Bessel-term occurs because of the interference between
the wave-functions of the two particles. The normalized distance occurs due to the fact that
the interaction between the two dots strongly depends on their distance and therefore gives us
one possibility to control the interaction. The frequency, normalized by the Larmor-frequency,
depends on the applied magnetic field and therefore gives us another possibility of control. Of
course it is much easier to control an external magnetic field, than a distance in a solid. Because
of this we will focus on the field-dependency of the exchange interaction in the following. The
graph in fig.4 shows the curve.



Figure 4: the dependency of the exchange energy on the external magnetic field. In terms of
magnetism the coupling goes from a antiferromagnetic regime to a ferromagnetic
regime, whereby there exists a zero-coupling despite the finite barrier between the dots.

Jij starts at a positive value (which means, in case of magnetism, an antiferromagnetic cou-
pling), then goes to zero at about 1.2 T and has a minimum at about 4 T. Afterwards it goes
asymptotically to zero. What happens is very interesting, because at about 1.2T we have no
coupling between the spins despite the finite barrier in between (remember that this is a kind
of tunnel coupling, which in the zero field case has a finite tunneling-possibility through a fi-
nite barrier). In fig. 4 we also see why we do not have a quantum computer available at the
local computer store - the minimum of the exchange energy lies around 1.3 meV, which is small
compared to the thermal energy at room temperature (around 26 meV). Therefore such devices
currently only work at very low temperatures. But it is very important to point out that we can
decouple the dots. Starting from this we can turn on the coupling for a certain time and thereby
apply an operation.

But how will the curve look, if we take a different approach. We only looked at groundstates.
We will now also look at higher energy states, which means in the sense of molecule physics,
where these methods were originally developed, at higher orbitals. This approximation is called
sp-hybridization. We will not derive the formula for the exchange energy in detail, but only look
at the results. The dependency of J on the magnetic field is shown in fig. 5



Figure 5: the dependency of the exchange energy on the external magnetic field. The light
blue line is the same as above, thereby we only had a look a the groundstates of the
wavefunction. The orange graph shows the dependency of the exchange energy on the
magnetic field considering also higher energy levels.

Fortunately we have a very similar curve, only the position an value of the zero-coupling
changed. This means we also can hope to find a sequence of time dependent changes in the
coupling which leads to bit-operations.

But first we will look at what changes if we now also allow two electrons per dot, which is
a realistic case. Therefore we will have to expand our Hilbert-space to four instead of two
dimensions [1]. This approximation was first done by Hund and Mulliken and is based on the
advanced Hubbard-model . We will also not dicuss this in detail, but just compare the curve
to the others, as done in fig. 6

Figure 6: the dependency of the exchange energy on the external magnetic field. The light blue
curve as well as the orange curve are the same as above.The green graph shows the
dependency of the exchange energy on the magnetic field using the Hund-Mulliken-
approach.

And again we see the zero coupling at nearly the same field as in the Heitler-London approach
and also a minimum beneath it. That means that we can be hopeful that we can achieve such
a non-coupling-regime. But now the next step is to use that fact for producing an operation in
our system.

3 Operations

Operations on our qubit can, as mentioned above, now be implemented by applying a time
dependent magnetic field to have a controlled interaction. Lets consider such a magnetic pulse.
We are starting from no coupling, which means Jij = 0 , which is achievable, as shown above.
An operation takes place, if Jij 6= 0 . So a pulse with

exp

(
i

~
SiSj

∫
Jij(t)dt

)
= exp

(
−iπ
~
SiSj

)



creates a spin-flip, which means the spin is turned around an angle of π. The graph of this
pulse is shown on fig. 7. This is called SWAP-operator and it is equivalent to the classical one.

Figure 7: Pulses of such type (the area under the graph is −π) create spin-flips.

But if this is a classical operation, how can quantum calculations be performed with it? The
answer is they can not. What we need for quantum computation are non-classical operations.
But it is easy to consider how to achieve a shape which produces such an operation. If the area
under the pulse is equal to −π

2 the operation will be the square root of the previous one:

exp

(
i

~
SiSj

∫
Jij(t)dt

)
= exp

(
−i
~
π

2
SiSj

)
=

√
exp

(
−iπ
~
SiSj

)
:= S

But
√
SWAP is a real quantum operation and thus has no classical equivalent. From now on

we call this operation S. It has been shown in previous publications ([1] and references therein),
that it is possible to create the controlled NOT-operator (CNOT) out of sequence with

√
SWAP

and some single qubit operations and a basic transformation. The CNOT-operator then is

UCNOT = V
[
ei π

2 Sz
1 e−i π

2 Sz
2SeiπS1zS

]
V †

where V and V † perform the basic transformation. While one can imagine one quantum
state as one point on a Bloch-sphere it would be wrong to imagine n qubits as n points on
a Bloch-sphere. Therefore it is not possible to show this sequence as a simple trajectory on
a Bloch-sphere. Therefore one has to have a close look at the matrix-representation. In its
diagonal form, the sequence looks exactly like the CNOT-gate, as it can be seen in many books
on quantum information theory (i.e. [3] ). One really important aspect of the achievement of
a CNOT-gate, is that all operations for computations can be derived from it .The interesting
question, now that we have seen that it is theoretically possible to perform quantum operations
on a semiconductor heterostructure, is how the experiments are going and we will have a look
at examples for the implementation of an 2-qubit-device.



4 Examples for Implementations

The most interesting question is, if implementations of 2-qubit-devices work. The first and
promising answer is yes, it is possible to implement such a device and it has already been done
in several laboratories ([1] and references therein). The design of the metallic gates on the top
of the GaAs-structure is unfortunately not as simple as shown in graphic 1. Figure 8 shows how
a design looks like in todays laboratories. The expectations on this technology are very high
and a lot of research is being performed, both by national and commercial research institutes.
Nevertheless the goal to realize a pair of qubits in such a system at roomtemperature has not
been achieved yet. But hope lies in further investigations to find materials with high exchange
energies (higher than kBT ).

Figure 8: Example for a real implementation of an 2-qubit-system (from
http://marcuslab.harvard.edu/images/dots.gif)

Another very interesting technique, is to place quantum dots in microcavities, whereby the
exchange is done by virtual photons. This proceeds as follows: make holes in the GaAs photonic
cristal by EBL (electron beam lithography) and chemical etching, then produce a line defect
by removing some holes (see fig. 9). The optical confinement is inplane given by the 2-dim.
photonic crystal and offplane by the GaAs-air-interface. This forms a so called microcavity in
which the virtual photons can be exchanged.



Figure 9: Example of a real implementation of a microcavity-quantum-dot-system. The quality
Q of the microcavity is optimized by the hole radius, lattice spacing and membrane
thickness. (done by M. T. Rakher, L. A. Coldren, Cavity QED with quantum dots in
semiconductor microcavities, preprint version, University of California Santa Barbara)

The theoretical description differs from those shown above, because of the different exchange
interaction (here described by the transverse-coupling), but the scheme remains the same:

1. find the Hamiltonian of the system

2. calculate the terms for the interaction

3. find a suitable description of the exchange energy

4. find a variation of exchange to produce non-classical operations

5 Summary

In this work, the idea of a qubit-implementation done by electron spins was presented by the
example of a GaAs/AlGaAs heterostructure. To understand the physics behind these devices,
we had a closer look at the exchange interaction and how the coupling is controlled by external
gates. A simple description of the exchange interaction was presented and some approximate
results for the exchange energy were given. As shown in former publications ([1] and references
therein), operations on 2-qubit-systems can be realized by a time depending exchange between
the dots. One sequence to achieve an essential quantum-operation, from which all computations
can be gained, has been shown. In the last part we have seen one example for the heterostructure-
realization and discussed the expectations of these devices and the problems which have to be
solved by further research. In a second example, it was shown that the scheme, applied in this
work, remains valid in a more general sense and leads to quantum operations which are necessary
for the realization of a quantum computer
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