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Abstract

This article is a first look at the most general operations on quantum
systems, named quantum operations. It is intended for students familiar
with non-relativistic quantum mechanics including the density operator,
product Hilbert spaces, and the Bloch sphere representation of two-state
systems. The concept of quantum operations is defined and important
theorems as well as examples are presented and explained. Completely
general quantum measurements are introduced as a natural extension of
measurements using the new concept of quantum operations. Advanced
sections and footnotes are marked with an asterisk.
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1 Introduction

1.1 Background

Experiments

Eρ M
A (quantum) experiment, in abstract terms, consists of preparing a system in
a state, doing something to the system, and finally measuring something about
the system. This procedure is then repeated on an ensemble of statistically
independent systems. Measurement statistics are gathered and compared to
theory.

Mathematical Description 1

In non-relativistic quantum mechanics pure states of closed
systems are represented by vectors in a Hilbert space of
dimension d.

|ψ〉 ∈ Hd

Linear operators map vectors to vectors. |ψ〉 → |ψ′〉 = A |ψ〉
They have a matrix form. Aij = 〈i|A |j〉
The space of linear operators is called Liouville space. A ∈ Ld2

Superoperators are linear maps of linear operators to linear
operators.

A→ A′ = E(A)

Superoperators As stated above, superoperators are linear maps of linear
operators to linear operators. If this is a new concept, you may wonder what
mappings are included in the concept of superoperators. Here are some exam-
ples.

• U(A) = U AU†

• L(A) = 1
~ [H, A]−

• T (A) = AT

In general, a superoperator can be any linear map, i.e. any rank 4 tensor.

1*Hilbert spaces considered in this document are always assumed to have finite dimension.
This is not a limitation of the quantum operation formalism. Infinite dimensions are eschewed
here in order to avoid the required convergence arguments which distract from the conceptual
understanding. They are handled in Kraus’ lecture notes[2].
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1.2 Motivation

Density Operators At this point, it is useful to recall the relationship of ket
vectors to density operators. A closed system in a pure state can be described
by a ket vector |ψ〉 in the Hilbert space Hd. Density operators are generally
introduced to describe statistical mixtures, however, there is source of mixtures.
If our system of interest A is entangled with another system B, the reduced
density matrix for A will in general be a mixture, even if the composite system
AB is in a pure state. Furthermore, having access only to system A, there
is no way to tell the two kinds of mixtures apart if they have identical density
operators. (The expectation value of any operator OA acting on A is completely
determined by ρA:

〈
OA
〉

A
= Tr

[
OAρA

]
.)

Statistical mixture ρ = p1 |ψ1〉 〈ψ1|+ p2 |ψ2〉 〈ψ2|
Subsystem mixture ρA = Tr

[
ρAB

]
, ρAB =

AB
〈ψ| |ψ〉

AB

Operations? We have seen that density operators generalize pure states. But
we are still acting on our system with “pure” operations, for example ρ →
e−iHt/~ ρ e+iHt/~. How can we handle probabilistic operations 2 and operations
involving open systems?

p1 E1

E2p2

ρ
A

C

B

Figure 1: A complicated operation. A is initially entangled with C. E1 occurs
with probability p1 and E2 with probability p2. E1 additionally entangles A with
system B.

The Long Method We can already calculate the result of complicated opera-
tions, such as those discussed in the last section. Consider a system A entangled
with a second system B. Unitary operators UAB

(i) act on the composite system.

2The reader may wonder why we would want to perform different operations on each system
of the ensemble based on a random dice rolls. Indeed, this is a description of something not
generally desired but always present: noise. The ability to describe the effects of noise on a
system is a great strength of the quantum operation formalism.
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The probability that UAB
(i) is carried out is given by pi. The process for calcu-

lating the resulting density operator ρ′A is straightforward:

1. Find ρAB . If A and B are initially separable, then ρAB = ρA ⊗ ρB .
Otherwise, we assume ρAB has been previously calculated or is otherwise
known.

Find ρAB

2. Calculate the effect of each of the unitary operators on the composite
system.

ρ′AB
(i) = UAB

(i) ρABUAB†
(i)

3. Trace over the rest of the system to find the reduced density operator for
A resulting from operation UAB

(i) .

ρ′A(i) = TrB

[
ρ′AB
(i)

]
4. Find the final density operator for A by weighting by the probabilities of

each unitary operation.

ρ′A =
∑

i

piρ
′A
(i)

The above outlined “long” method produces the desired result without requiring
a new mathematical formalism. In keeping with our analogy to density opera-
tors, note that density operators are also not absolutely required — we could
meticulously keep track of all possible pure states and associated probabilities of
the composite system. However, while not necessary, the density operator for-
malism streamlines these calculations, and additionally provides insight about
what kinds of mixtures are distinguishable. We shall see analogous benefits from
the quantum operation formalism.

The New Method In the “new” method, we are only concerned with system
A. Other systems may be present, but they are only a means of acting on our
system of interest A. We describe the action of all external entanglement and
operations mathematically as: ρ→ ρ̃′ = E(ρ) 3 or pictorially as:

ρ̃′ρ E
This is called an in-out representation, in contrast to time dynamics using, for
example, Schrödinger’s equation. In this form, we are only concerned with the
final state as a function of the initial state. 4

3Tildes denote density operators that may not be properly normalized (0 ≤ Tr [ρ̃′] ≤ 1).
4*Time evolution of the density operator of an open quantum system is given by a Master

Equation using a Lindbladian with Lindblad operators. However, the Markovian assumption
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2 Quantum Operations

Quantum Operations are defined mathematically as mappings from density op-
erators to density operators ρ→ ρ̃′ = E(ρ) with the following three properties:

• Linear

• Does not increase the trace

• Completely positive

2.1 Properties

Linearity

E
p1

p2

ρ(1)

ρ(2)

Consider our operation applied to a statistically mixed input state. With prob-
ability p1 our system is in the state ρ(1) and with probability p2 our system is
in the state ρ(2). When ρ(1) is input, E(ρ(1)) must be the result and similarly
for ρ(2). The resulting density matrix is the weighted sum p1E(ρ(1))+p2E(ρ(2)).
But we can also write the (mixed) input density matrix as p1ρ(1) +p2ρ(2) which
has the output E(p1ρ(1) + p2ρ(2)). We conclude:

E(p1ρ(1) + p2ρ(2)) = p1E(ρ(1)) + p2E(ρ(2)) (1)

This is exactly definition of linearity. Linearity implies that quantum operations
are a subset of superoperators (recall that superoperators are linear maps from
linear operators to linear operators).

Does not increase the trace Density operators have unity trace, so it might
be expected that quantum measurements be maps from unity trace operators
to unity trace operators. This requirement is relaxed slightly to allow selective
measurements to fit into the formalism.
underpinning this approach does not in general hold for entangled systems meaning that the
time evolution cannot be calculated without knowledge of the state of the composite system or
alternatively complete knowledge of the history of the open system A. For more information,
see [1, p277ff].
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Figure 2: A selective measurement. Spin-down atoms are removed from the
ensemble.

A selective measurement is shown in Figure 2. Our system, a spin- 12 atom,
moves through a Stern-Gerlach device. We choose to only use spin-up atoms and
therefore block the lower path. This can be described as a quantum operation,
but the resulting density operator will not be normalized, Tr [E(ρ)] < 1. For
example, if half of the atoms are spin-down then Tr [E(ρ)] = 1

2 .

Figure 3: A non-selective measurement. Spin is measured, but no systems are
removed from the ensemble.

A non-selective measurement is shown in Figure 3. A laser illuminates the
center section where the spin-up and spin-down components of the atom are
separated. For each atom we will see fluorescence in either the upper or lower
path. After fluorescence, the spatially separated spin-up and spin-down systems
are combined. If the measured spin information is not used to distinguish the
systems 5 , the process can be described by a quantum operation. Because
no systems were excluded, the resulting density operator will have unity trace,
Tr [E(ρ)] = 1.
Considering selective measurements, we allow for systems being removed from

5If the information is used to distinguish the systems, we would have effectively split
our initial ensemble and would therefore have two different density operators, one for each
measurement result, i.e. ρ̃′↑ and ρ̃′↓. This would again be a selective measurement since we
are selecting based on the measured value: Tr[ρ̃′↑] ≤ 1 and Tr[ρ̃′↓] ≤ 1.
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the ensemble. Adding systems to the ensemble is, however, not possible. We
therefore demand

Tr [E(ρ)] ≤ 1 when Tr [ρ] = 1 (2)

If required, the resulting density operator can be normalized

ρ′ =
E(ρ)

Tr [E(ρ)]

Completely positive The preceding argument for allowing the trace of the
density operator to decrease was based on selective measurements removing
systems from the ensemble. Such operations can at most remove all of the
systems, in which case Tr [ρ̃′] = 0. In other words, even unnormalized density
operators must be positive operators. It seems logical to require E(ρ) to be a
mapping from positive operators to positive operators, E(ρ) ≥ 0 . It turns out
this is not quite restrictive enough. 6

The correct requirement follows from consideration of the possibility that system
A is entangled with an external system B. The quantum operation acts directly
only on A, but the entanglement may have an indirect effect on the entangled
system B. 7

ρAB != ρA ⊗ ρB

(EA ⊗ B)(ρAB)

A

A

B

B

Figure 4: The operator EA has an indirect effect on system B due to the existing
entanglement between systems A and B. The resulting density operator for the
composite system AB must be a positive operator.

The quantum operation for the combined system is written as (EA⊗ 1B)(ρAB),
understood to mean that E acts on the subspace HA and 1 (i.e. nothing) acts
on the subspace HB . We therefore require for quantum operations

(EA ⊗ 1
B)(ρAB) ≥ 0 for all dimensions of HB (3)

6*A superoperator which does not increase the trace and is positive but not completely
positive is the transpose operator T (ρ) = ρT [1, p275].

7The prototypical example is an EPR experiment where observation of one system deter-
mines the state of the other, spatially-separated system.
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2.2 Kraus’ Theorem

The most important theorem relating to quantum operations is called Kraus’
Theorem, or the Operator-Sum-Decomposition Theorem.

Theorem A mapping ρ→ ρ̃′ = E(ρ) is a quantum operation (meaning it has
the three properties linearity, non-increasing trace, and complete positivity) if
and only if there exists an operator-sum decomposition

E(ρ) =
∑

i

KiρK
†
i

with linear operators (called Kraus operators) that satisfy 8

∑
i

K†iKi ≤ 1

Remarks

• The inequality is strictly less-than when the quantum operation does not
conserve the trace, and equal when the quantum operation conserves the
trace.

• Kraus’ theorem is an “if and only if” relation and therefore implies the
existence of Kraus operators if the three properties 2 are fulfilled and
guarantees the three properties for any set of Kraus operators.

• The number of Kraus operators is not constrained, and can even be infinite
for finite dimensional HA.

• Kraus’ theorem states only existence and not uniqueness. 9

8*In the more general case of infinite dimensions, the inequality
P

i K
†
iKi ≤ 1 plays a key

role in ensuring the proper definition and convergence of summations [2, p42ff].
9We will see in the examples that the set of Kraus operators describing a quantum operation

is definitely not unique.
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2.3 Simple Examples

We now consider two simple examples to familiarize the reader with quantum
operations and the operator sum form.

Non-selective Measurement Our first example is the non-selective mea-
surement discussed in 2.1. With probability 〈0z| ρ |0z〉 the system is projected
into the pure state |0z〉 〈0z| (and similarly for the 1z direction).

Ez(ρ) := 〈0z| ρ |0z〉 |0z〉 〈0z|+ 〈1z| ρ |1z〉 |1z〉 〈1z|
This is nearly in the Kraus form. Since 〈0z| ρ |0z〉 is a c-number, we may move
it inside the associated projection operator |0z〉 〈0z|.

Ez(ρ) = |0z〉 〈0z| ρ |0z〉 〈0z|+ |1z〉 〈1z| ρ |1z〉 〈1z|
Adding parentheses to guide the eyes, and taking the adjoint of the (self-adjoint)
projection operators on the right,

Ez(ρ) = (|0z〉 〈0z|) ρ (|0z〉 〈0z|)† + (|1z〉 〈1z|) ρ (|1z〉 〈1z|)†

This is now clearly in the Kraus form, implying that the operation is a quantum
operation (is linear, does not increase the trace, and is completely positive). The
Kraus operators can be read off:

K1 = |0z〉 〈0z| K2 = |1z〉 〈1z|

Something Different Our second example is of the new, probabilistic type
of operation mentioned in the Motivation 1.2. The operation consists of doing
nothing half of the time 10 , and half of the time applying σz (a rotation of
π about the z-axis of the Bloch sphere). We can write its effect on a density
operator as

Êz(ρ) :=
1
2
ρ+

1
2
σz ρ σz

Splitting the 1
2 ’s, adding unity operators, and taking the adjoint of self-adjoint

operators where needed,
10An operation the author can identify with.

9



Êz(ρ) =
(

1√
2
1

)
ρ

(
1√
2
1

)†
+
(

1√
2
σz

)
ρ

(
1√
2
σz

)†
Again, we have a Kraus form and therefore a quantum operation. This time the
Kraus operators are:

K̂1 =
1√
2
1 K̂2 =

1√
2
σz

Non-uniqueness The effect of our quantum operations from the previous two
examples can be calculated in matrix form for a general density operator. For
the non-selective measurement we have:

Ez(ρ) = Ez
((

ρ11 ρ12

ρ21 ρ22

))
= (|0z〉 〈0z|)

(
ρ11 ρ12

ρ21 ρ22

)
(|0z〉 〈0z|) + (1z term)

=
(

1 0
0 0

)(
ρ11 ρ12

ρ21 ρ22

)(
1 0
0 0

)
+ (1z term)

=
(
ρ11 0
0 0

)
+
(

0 0
0 ρ22

)
=

(
ρ11 0
0 ρ22

)
And for the new, probabilistic quantum operation:

Êz(ρ) = Êz
((

ρ11 ρ12

ρ21 ρ22

))
=

1
2

(
ρ11 ρ12

ρ21 ρ22

)
+

1
2

(
1 0
0 −1

)(
ρ11 ρ12

ρ21 ρ22

)(
1 0
0 −1

)
=

1
2

(
ρ11 ρ12

ρ21 ρ22

)
+

1
2

(
ρ11 −ρ12

−ρ21 ρ22

)
=

(
ρ11 0
0 ρ22

)
We conclude that the two sets of Kraus operators describe the same quantum
operation.

p(1)

|0z〉 〈0z|p(0)

|1z〉 〈1z| 1
2

1
2

σz
=

10



Again, Kraus’ Theorem only guarantees the existence of a Kraus operator de-
composition, and says nothing about uniqueness. Non-uniqueness is in fact the
general case. This is not surprising considering that there are many many ways
to implement a given quantum operation, each of which has its own “natural”
set of Kraus operators.
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2.4 Quantum Channels

In classical information theory, information is moved from one place to another
through information channels which have some (in general deleterious) effect on
the information being passed through the channel.
Analogously, moving a quantum system from one location to another (or sim-
ply forward in time) can be viewed as moving the system through a quantum
channel. The act of moving through the quantum channel has an effect on the
system and the effect is a quantum operation.

Phase Damping Channel A generalization of the first example in 2.3 assigns
the probability p ≤ 1

2 to the σz operation and 1− p to doing nothing. 11

K1 =
√

1− p1 K2 =
√

pσz

E

Figure 5: The effect of a phase damping channel (with p = 1
4 ) on the Bloch

sphere.

The effect of this quantum operation can be visualized by the mapping of points
on the surface of the Bloch sphere (Figure 5). All points on the z-axis are fixed
points and are mapped onto themselves by the operation. Repeated application
of the quantum operation will collapse the entire Bloch sphere onto the z-axis.
This is a model for noise that effects the phase of the Bloch vector.

Depolarization Channel The depolarization channel has a Kraus decompo-
sition using the following four Kraus operators with p ≤ 3

4 .
12

K0 =
√

1− p1 Ki =
√
p

3
σi (i = 1 . . . 3)

11p > 1
2
also defines a quantum operation, one that inverts the phase of the Bloch sphere.

However this operation cannot be realized by repeated application of a phase damping oper-
ation with p� 1

2
and is therefore not a model for phase damping noise.

12As in the previous example, p > 3
4
also defines a quantum operation, this time inverting

the Bloch sphere. Again, this operation cannot be realized by repeated application of a
depolarization channel with p� 3

4
and is therefore not a model for depolarization noise.
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Points on the Bloch sphere move towards the center (Figure 6). Mixtures be-
come more mixed. The completely mixed state at the origin of the Bloch sphere
is a fixed point.

E

Figure 6: The effect of a depolarization channel (p = 1
2 ) on the Bloch sphere.

Amplitude Damping Channel For the last example we will look at a sim-
plified physical system and determine the Kraus operators. Our system is a
two-level Atom A. A helper system, Box B 13 , initially contains zero photons.
To be clear, the system B is prepared in the same empty state for each system
A of the ensemble.
If the atom is initially in the ground state, there is no energy available and the
atom will always exit the box in the ground state. If the atom is in the excited
state, there is a probability p that the atom emits a photon into the box (see
Figure 7).

p

1-p

A B

Figure 7: An atom A in the excited state has probability p to emit a photon
when passing through the initially empty box B.

The probabilities determine the associated matrix elements of the transforma-
tion matrix UAB . 14

13Actually not a “box” but a resonate cavity, which unfortunately does not begin with B.
14We use the pictorial basis vectors | 〉

A
, | 〉

A
for the atom in the ground and exited state

and | 〉
B
, | 〉

B
for the box with zero and one photon respectively.
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∣∣〈 , |UAB | , 〉∣∣2 = p∣∣〈 , |UAB | , 〉∣∣2 = 1− p∣∣〈 , |UAB | , 〉∣∣2 = 1

All other matrix elements with | 〉
B

in the initial state vanish. We can now
determine the effect of the operation using the “long” method (1.2) with our
initial state ρA ⊗ | 〉

B B
〈 |.

ρ′A = TrB

[
UAB

(
ρA ⊗ | 〉

B B
〈 |)UAB†]

= TrB

[
UAB | 〉

B
ρA

B
〈 |UAB†]

=
B
〈 |UAB | 〉

B
ρA

B
〈 |UAB†| 〉

B
+

B
〈 |UAB | 〉

B
ρA

B
〈 |UAB†| 〉

B

By explicitly taking the trace overHB we have found the Kraus operators. They
are

B
〈 |UAB | 〉

B
and

B
〈 |UAB | 〉

B
, sub-matrices of the transition matrix UAB .

In fact they are the first column of sub-matrices. Ignoring possible phases 15 ,
the Kraus operators can be written in the | 〉

A
=
(
1
0

)
, | 〉

A
=
(
0
1

)
basis using the

matrix elements found above.

KA
0 =

B
〈 |UAB | 〉

B
=
(

1 0
0
√

1− p
)

KA
1 =

B
〈 |UAB | 〉

B
=
(

0
√
p

0 0

)
The action on the Bloch sphere (Figure 8) is a compression towards the top of
the sphere. The atom ground state at the top of the Bloch sphere is a fixed
point. This is what we would expect given the physical system we started with.
The empty box provides a means for excited-state atoms to enter the ground
state, but no means to enter the excited state. Any mixture passing through
this channel must evolve in the direction of the pure ground state.

15*Arbitrary phases in the elements of the Kraus operators cannot be ruled out from the
physical description (in terms of probabilities) of this example. A phase of KA

1 would cancel
in the Kraus sum, but a phase difference between the two non-zero components of KA

0 is
relevant. Its effect would be an additional overall rotation of the Bloch sphere about the
z-axis.
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E

Figure 8: The effect of an amplitude damping channel (p = 1
2 ) on the Bloch

sphere.

2.5 Unitary Implementation Theorem

Quantum operations can be implemented in many ways. Interestingly, they
can always be implemented using a helper system with unitary operations and
projections.

Theorem For every quantum operation, there exists a helper system B ini-
tially in a pure state, a unitary operator UAB acting on the composite system
AB, and a projection operator PB acting on the helper system B such that the
operation of UAB followed by PB is a realization of the quantum operation.

E(ρA) = TrB

[
PBUAB

(
ρA ⊗ |1〉

B B
〈1|)UAB†PB†]

UAB

PBE
B B B

AAA

Figure 9: A unitary implementation of E . The unitary operator UAB mixes the
initially separable systems A and B. Then, a projection operator acting on B
has an indirect effect (through the entanglement) on A.

Proof Let {Ki ; i = 1 . . . N} be a set of Kraus operators for the quantum
operation. Define an additional Kraus operator KN+1 such that KA†

N+1K
A
N+1 =

15



1 −∑N
i KA†

i KA
i . Define a helper system HB with dimension N + 1. Let

{|i〉
B

; i = 1 . . . N + 1} be an orthonormal basis for HB with |1〉
B

the initial
pure state of system B. Define a unitary operator UAB on HAB such that
B
〈i|UAB |1〉

B
= KA

i . 16 Define a projective operator PB on HB as PB =
1− |N + 1〉

B B
〈N + 1|. The proof now follows from evaluating ρ̃′A.

ρ̃′A = TrB

[
PBUAB

(
ρA ⊗ |1〉

B B
〈1|)UAB†PB†]

=
∑N+1

i B
〈i|PBUAB |1〉

B
ρA

B
〈1|UAB†PB† |i〉

=
∑N

i B
〈i|UAB |1〉

B
ρA

B
〈1|UAB† |i〉

=
∑N

i
KA

i ρ
AKA†

i

�

16The columns of a unitary operator form a set of orthonormal vectors. Finding a unitary
operator given the requirement

B
〈i|UAB |1〉

B
= KA

i is equivalent to completing a partial set
of orthonormal vectors which can always be done.
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3 Completely General Selective Measurements

Review: Projective Measurements Projective measurements consist of a
set of possible measurement values {m} and associated projection operators Pm

which fulfill
∑

m Pm = 1. The measurement value which actually occurs is non-
deterministic, with probabilities p (m) = Tr

[
PmρP

†
m

]
. If value m is measured,

the new state is transformed as

ρ→ ρ̃′ = PmρP
†
m

Completely General Selective Measurements The generalization of pro-
jective measurements is to replace the projection operators with quantum op-
erationsMm.

ρ̃′ρ Mmm

If the value m is measured, the state is transformed as

ρ→ ρ̃′ =Mm(ρ) =
∑

i

Mm,iρM
†
m,i

Where the operators Mm,i are the Kraus operators for each possible measure-
ment outcome m. The number of operators is in general different for each
possible measurement outcome (i.e. the range of i can be different for each m).
The probability of a particular measurement outcome m is

p (m) = Tr [Mm(ρ)]

Some value is always measured (if necessary, by defining a null measurement
value), which implies that the sum of the probabilities is one, or alternatively,
that the set of Kraus operators over all measurement values is a complete mea-
surement.∑

m

p (m) =
∑
m

Tr [Mm(ρ)] = 1 ⇐⇒
∑
m,i

M†m,iMm,i = 1

17



3.1 Unitary Implementation Theorem

Similar to quantum operations, completely general selective measurements can
be implemented with a helper system using the familiar unitary operations and
projective measurements.

Theorem 17 For every completely general selective measurement, there exists
a helper system B initially in a pure state, a unitary operator UAB acting on
the composite system AB, and a set of projective measurement operators PB

m

acting on the helper system B such that the operation of UAB followed by
The projective measurement with PB

m is a realization of the completely general
selective measurement.

m
UAB

PB
mMm

AA A
BB B

Figure 10: A unitary implementation of a completely general quantum mea-
surement. The unitary operator UAB mixes the initially separable systems A
and B. Then, a projective measurement made on B yields a the measurement
outcome m and has an indirect effect (through the entanglement) on A.

17The (omitted) proof of this theorem uses the same techniques used for the proof of the
unitary implementation of quantum operations.
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A Summary of Generalized Quantum Mechanics

Quantum Operations

ρ̃′ρ E
A quantum operation E describes the deterministic transformation of an open
quantum system. 18

ρ→ ρ̃′ = E(ρ)

It has a Kraus sum decomposition.

E(ρ) =
∑

i

KiρK
†
i

If the Kraus operators sum to the identity operator, the operation is complete,
otherwise it is an incomplete operation.∑

i

K†iKi ≤ 1

Completely General Selective Measurements

ρ̃′ρ Mmm

Completely general selective measurements produce a measurement value and a
non-deterministic state evolution. The evolution for a particular measurement
value is itself a quantum operation.

ρ→ ρ̃′ =Mm(ρ) p (m) = Tr [Mm(ρ)]
∑
m

p (m) = 1

The Mm operators have a Kraus representation. The Kraus operators for all
possible measurement values together form a complete operation.

Mm(ρ) =
∑

i

Mm,iρM
†
m,i p (m) = Tr

[∑
i

Mm,iρM
†
m,i

] ∑
m,i

M†m,iMm,i = 1

18A non-selective measurement has a deterministic effect and is therefore also considered a
quantum operation.
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B *Proof of Kraus’ Theorem

Proving Kraus’ Theorem requires proving both directions. We start with the
easy one.

Kraus 1 Given a set of Kraus operators {Ki ; i = 1 . . . N} satisfying the in-
equality

∑N
i K†i Ki ≤ 1, the operation E(ρ) =

∑N
i Ki ρK

†
i is a quantum oper-

ation.

Proof Linearity and not increasing the trace follow from the Kraus operator
sum form and the requirement

∑N
i K†i Ki ≤ 1. We consider complete positiv-

ity by evaluating
AB
〈ψ| ρ̃′AB |ψ〉

AB
for arbitrary ρAB and |ψ〉

AB
. Let d′ be the

dimension of the product Hilbert space HAB . Let {|j〉
AB

; j = 1 . . . d′} be the
eigenvectors and {pj ; j = 1 . . . d′} the non-negative eigenvalues of the initial
density operator ρAB . Then,

AB
〈ψ| ρ̃′AB |ψ〉

AB
=

∑
i

AB
〈ψ|KA

i ρ
ABKA†

i |ψ〉AB

=
∑
i,j

AB
〈ψ|KA

i

(
pj |j〉AB AB

〈j|
)
KA†

i |ψ〉AB

=
∑
i,j

pj

∣∣∣∣ AB
〈ψ|KA

i |j〉AB

∣∣∣∣2
≥ 0
�

Kraus 2 Given a quantum operation E(ρ), there exists a set of Kraus operators
{Ki ; i = 1 . . . N} such that

∑N
i K†i Ki ≤ 1 and E(ρ) =

∑N
i Ki ρK

†
i .

Proof 19 Let d be the dimension of HA. Let HB be a second system of
dimension d. 20 Let {|i〉

A
; i = 1 . . . d} be an orthonormal basis of HA and

{|i〉
B

; i = 1 . . . d} be an orthonormal basis of HB .
We will characterize the operation of E on HA completely by the operation
of the extended operator (EA ⊗ 1

B) on a specific maximally entangled (and
unconventionally normalized 21 ) state |Ψ̃〉

AB
defined as

|Ψ̃〉
AB

:=
d∑

i=1

|i〉
A
⊗ |i〉

B

19The proof employs the techniques used by Audretsch [1, p308ff] and Preskill [4, p100ff].
20A subtle point: only positivity with dim(HB) = dim(HA) is required to prove a quantum

operation has a Kraus sum representation. Considering HB of lesser dimension is insufficient.
Positivity with dim(HB) > d does not provide further restrictions.

21Using AB〈Ψ̃|Ψ̃〉AB = d instead of 1 avoids many factors of
√
d which would simply cancel

in the end.
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Because E is completely positive, the operation of (EA ⊗ 1B) on the density
matrix |Ψ̃〉

AB AB
〈Ψ̃| is also an (unconventionally normalized) density operator,

which we write in its eigenbasis as

(EA ⊗ 1
B
) (|Ψ̃〉

AB AB
〈Ψ̃|
)

=
∑

j

qj |Φj〉AB AB
〈Φj |with qj ≥ 0,

∑
j

qj ≤ d

Define the (anti-linear) mapping |ψ〉
A
→ |ψ∗〉

B
from HA to HB by the conju-

gation of the coefficients of our chosen basis vectors. In the literature, |ψ〉
A

is
called the “relative state” of the “index state” |ψ∗〉

B
.

|ψ〉
A

=
∑

i

ci|i〉A −→ |ψ∗〉B =
∑

i

c∗i |i〉B

Note that the anti-linear mapping and maximally entangled state are con-
structed to have the following property:

|ψ〉
A

=
B
〈ψ∗|Ψ̃〉

AB

Lastly, define the Kraus operators as the following mapping. This is linear
because the |ψ〉

A
→ |ψ∗〉

B
mapping is anti-linear.

KA
j |ψ〉A −→

√
qj B
〈ψ∗|Φj〉AB

We are now ready to apply E to a general density matrix of HA and see that it
has the Kraus sum decomposition.

EA
(
ρA
)

= EA
(∑

i

pi|ψi〉A A
〈ψi|

)
=

∑
i

piEA
(
|ψi〉A A

〈ψi|
)

=
∑

i

piEA
(

B
〈ψ∗i |Ψ̃〉AB AB

〈Ψ̃|ψ∗i 〉B
)

=
∑

i

pi B
〈ψ∗i | EA

(
|Ψ̃〉

AB AB
〈Ψ̃|
)
|ψ∗i 〉B

=
∑

i

pi B
〈ψ∗i |

(∑
j

qj |Φj〉AB AB
〈Φj |

)
|ψ∗i 〉B

=
∑
i,j

piqj

(
B
〈ψ∗i |Φj〉AB AB

〈Φj |ψ∗i 〉B
)

=
∑
i,j

pi

(
KA

j |ψi〉A A
〈ψi|KA†

j

)
=

∑
j

KA
j

(∑
i

pi|ψi〉A A
〈ψi|

)
KA†

j

=
∑

j

KA
j ρ

AKA†
j

�
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