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Abstract

In this paper an important class of quantum bits, namely the super-

conducting quantum bits will be introduced. First a few basic principles

will be discussed, among others the quantum mechanical behavior of the

macroscopic degrees of freedom in superconductors. The Josephson Junc-

tion, a very important component allowing superconducting quantum bits,

will also be described, and the physical processes behind it will also be

looked at. Finally, two basic examples of superconducting quantum bits:

the Cooper pair box, or charge quantum bit, or the rf-SQUID, or �ux

quantum bit.
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1 Introduction

An important part of quantum computing theory is the quantum bit (qubit).
A qubit is an abstract mathematical concept that can be realized by physical
systems. Common examples of systems that can be used as qubits are the
polarization of light and spin- 1

2 qubits. Important for these systems is that they
have some degree of freedom that behaves quantum mechanically. In the two
examples mentioned above, these degrees of freedom are strictly microscopic
in nature: spin, obviously, of electrons and atoms; or the polarization of light.
There are, however, possibilities of realizing a qubit system with macroscopic

degrees of freedom.

This new class of qubit is based on the fact that some macroscopic degrees
of freedom in superconducting materials behave quantum mechanically. As a
result, the qubits described by this class are called superconducting (SC) qubits.
SC qubits are in fact simply SC circuits.

1.1 Requirements for Qubit Implementation

Before introducing SC qubits, it is important to �rst understand how supercon-
ductors ful�ll the requirements for qubit implementation.

The �rst requirement is that the degrees of freedom must behave quantum
mechanically. In order for this to happen, the di�erent possible states must
retain phase coherence. This is partially realized with superconductors in that
they transport electrons without energy loss (non-dissipative transport).

The second requirement is that the qubit be non-linear. This is important
because linear systems exhibit harmonic behavior. Figure 1 on the following
page shows the di�erence between a harmonic and an anharmonic oscillator. In
the case of the harmonic oscillator there is no guarantee of qubit preservation.
If both the ground state and �rst excited states are populated, any e�ort to
move to a system where only the �rst state is populated will result in the loss of
information. Because the energy transitions are degenerate, the energy to move
from the ground state to the �rst state is the same as that for a transition from
the �rst state to the second. The anharmonic oscillator, however, isolates the
to lowest states. This means that the energy transitions are non-degenerate,
ensuring that no information is lost when populating the �rst state.

Both of these requirements are met by devices called Josephson Junctions.
These will be introduced at the end of a quick introduction to superconduc-
tivity.
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Figure 1: Pictured on the left is an example of harmonic behavior. Energy tran-
sitions are On the right is a situation where a non-linear element is introduced.
Two energy levels are isolated.

2 Superconductivity and Quantum Mechanics

Both the theories of superconductivity and quantummechanics have been around
for a long time. It was not until the 1980's, however, that research was under-
taken to see if the laws of quantum mechanics applied to macroscopic systems.
Researchers found a number of macroscopic phenomena that followed the laws
of quantum mechanics and exhibit quantum behavior, such as quantum tunnel-
ing. At the end of the 1990's researchers began to realize that Josephson devices
could be used as qubits.

2.1 Superconductivity

One of the main theories describing the behavior of SC materials is the so-
called BCS theory, named after its discoverers Bardeen, Cooper and Schrie�er.
This theory is a microscopic theory that says the units of the supercurrent, the
current �owing through a superconductor, are Cooper pairs. The are pairs of
electrons bound together, resulting in a charge of 2e, a mass of 2me and a total
spin of zero, in other words, they are bosons. Furthermore, all of these Cooper
pairs are, in the words of Clarke et al., "condensed into a single macroscopic
state described by a wavefunction"

Ψ (r, t) = |Ψ (r, t)| expiφ(r,t)

where r is the position and t is the time. The phase φ (r, t) is an order parameter
of the SC material, which means that it is unique to the material. This wave
function leads us to two important phenomena for qubits: �ux quantization,
and Josephson tunneling.

3



2.1.1 Flux Quantization

The �ux quantization can be seen after undertaking the typical process to create
a SC current in a loop. A SC ring cooled below its critical temperature (the
temperature below which superconductivity is seen) while in a magnetic �eld will
cause a super current to �ow through the ring if is removed from the magnetic
�eld. This mechanism ensures that the magnetic �ux through the ring remains
constant. This is a surprising e�ect in itself, even more surprising is that this
�ux is quantized with integer values of

Φ0 =
h

2e
≈ 2.07× 10−15Tm2

where h is Planck's constant, and e is the elementary charge.

2.2 The Josephson Junction

The Josephson Junction (JJ) is the device which makes SC qubits possible. A

φ1

φ2

Figure 2: Basic representation of a Josephson Junction (JJ).

very basic representation of a JJ is depicted in �gure 2. The JJ consists of an
insulating or even metallic, non-SC layer sandwiched by two SC layers. This
non-SC layer is on the oder of a few atoms thick. As discussed earlier, the two
SC layers can be characterized by their phases, which are the order parameters
of each side. The di�erence of these two parameters is the phase di�erence, δ

δ = φ1 − φ2

In �gure 3 on the following page the equivalent circuit of the JJ is depicted.
It is important to note that there are two di�erent electrical components that
make up the JJ. The �rst is the capacitor, characterized by its capacitance
CJ . The second is the "bare" Josephson element acts like an inductor with the
inductance LJ0 = Φ0

2πIC
(also known as the e�ective Josephson inductance).
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Figure 3: The equivalent circuit of the JJ [2]

2.2.1 The Josephson Equations

With two very important equations we can describe the behavior of the JJ. The
�rst describes the behavior of the current through the JJ:

I = IC sin δ (1)

There are a couple of interesting e�ects here. First, one sees that despite the non-
SC layer being present there is still a supercurrent �owing though the junction.

This is incredible, because according to BCS theory, it should not be possible
for Cooper pairs to be present in this non-SC layer. This means that the Cooper
pairs are tunneling through the non-SC layer, a quantum mechanical e�ect.

Second, one can clearly see the meaning of the critical current IC . The critical
current is the maximal current that can �ow through the junction. This is
determined by the cross-section of the junction and the width of the non-SC
layer.

Finally, one should pay close attention to what is missing. If one thinks back
to classical circuit theory, the relationship between current and voltage is given
by Ohm's law:

V = RI

As one can see here, the current does not have a direct voltage dependence.
Instead the current is periodically dependant on the phase di�erence of the two
SC layers.

The second equation describing the behavior of a JJ has to do with the voltage:

V =
~δ̇
2e

(2)

Solving this equation for δ̇, integrating over time and plugging back into equa-
tion (1) we see an interesting e�ect. Applying a dc-voltage across the junction
results in an ac-current. This again is quite astonishing behavior.
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2.2.2 Energy of the Josephson Junction

As seen in the last section, there are two di�erent e�ects in the JJ, each making
its own contribution to the total energy of the JJ.

First, there is the contribution from the Josephson capacitance, CJ . From
circuit theory we know that the energy stored in a circuit component can be
calculated by taking the time integral over the product of the current through
and voltage across that element, i.e.

E =
∫
I · V dt (3)

In the case of the Josephson capacitance, where V = Q
CJ

, I = Q̇ and Q = 2e (a
single Cooper pair) we get:

ECJ
=
∫
Q̇ · Q

CJ
dt

=
1
CJ

∫
QdQ

=
Q2

2CJ

=
2e2

CJ
(4)

This value scales with n2, the number of Cooper pairs present in the capacitor
squared.

The second element, the bare Josephson element, which has the e�ective Joseph-
son inductance LJ0 and provides us with the e�ective Josephson coupling energy.

EJ =
ICΦ0

2π
.

The Josephson coupling energy, once again, can be calculated using equation (3)
with the Josephson equations (1) and (2):

Ecoup =
∫
I · V dt

=
∫
IC sin δ · ~δ̇

2e
dt

=
IC · h
2π · 2e

∫
sin δdδ

=− EJ cos δ (5)

With this knowledge it is now possible to describe a SC qubit.
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3 Basic Superconducting Qubits

There are two basic types of SC qubits that will be examined here. The �rst SC
qubit to be examined is the Cooper pair box, or charge qubit and is pictured in
�gure 4.

g=gate

j=josephson

Figure 4: The Cooper pair box, or charge qubit [4].

The second type of SC qubit is the �ux qubit, which is also an rf-SQUID, and
it is pictured in �gure 8 on page 11.

3.1 The Cooper Pair Box

The Cooper pair box consists of a Josephson junction connected with a bias
voltage, Vg and a gate capacitance Cg, making the total capacitance of the
qubit CΣ = CJ +Cg. It is important that the SC island between the capacitors
be small enough (and thus the capacitance also small enough) so that single-
electron charging energy of the qubit ECJ

be much larger than the thermal
energy Eth = kBT . This minimizes any disturbing thermal e�ects.

The qubit is characterized by n, the number of Cooper pairs on the island, and
choose the qubit charge states to be |n〉 and |n+ 1〉. One might quickly jump
to the conclusion that the charging energy of the total capacitance in this qubit
might be given by

Ech =
2e2

CΣ︸︷︷︸
=EC

n2

however, this is wrong. The mechanism for controlling the qubit needs to be
taken into account. In this case, the qubit is controlled through the gate voltage,
Vg, which results in a gate charge Qg = CgVg. The dimensionless gate charge
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is then ng = CgVg

2e , which �nally results in the correct term for the charging
energy of the qubit

Ech = EC (n− ng)2

It is important to note that although n is an integer, ng is a continuous variable.

It is now necessary to look at this term quantum mechanically. In switching
over to quantum mechanics, the variable n transforms into an operator n̂. The
energy term the becomes an unperturbed (some might say "unpertabated")
Hamiltonian:

Ĥ0 |n〉 = EC (n− ng)2 |n〉

A plot of the eigenfunctions of this Hamiltonian is given in �gure 5.

ng

E

0 1 3
21

2

n
n+ 1

n+ 2

Figure 5: The energy of the Cooper pair box capacitance plotted for n and ng.
For simplicity sake we take n = 0 and n+ 1 = 1.

As one can see, there are degeneracy points for the odd-multiples of 1/2. This
means that at these points there is a virtual charge on the SC island equal to
one half of a Cooper pair.

This, however, is not the complete story of the qubit. The second energy term,
which has not yet been taken into account, acts as a perturbation. This term
comes from quantizing the Josephson coupling energy:

δ →δ̂

Ecoup → ĤJ =− EJ cos δ̂

where
[
n̂, δ̂
]

= i. The complete Hamiltonian of the circuit becomes

Ĥ = EC (n̂− ng)2 − EJ cos δ̂ (6)

which reduces to [1]

Ĥqubit =
∆
2
σ̂x +

ε

2
σ̂z (7)
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with

∆ = −EJ

ε = EC

(
ng − n−

1
2

)2

Let us look and see what this perturbation does to the energy levels. To do this,
we need to carry out a �rst-order stationary perturbation calculation. The �rst
step is to build the perturbation matrix. The elements of this matrix are given
by

〈n′|EJ cosϕ |n〉 . (8)

We can explicitly calculate these values using the relation

|n〉 =
1√
2π

∫ 2π

0

dδe−inδ |δ〉

which gives us

〈n′|EJ cosϕ |n〉 =
EJ
2π

∫ 2π

0

dδeiδ(n−n
′) cos δ

There are only two interesting cases for this SC qubit, namely for n′ = n and
n′ = n+ 1. In the �rst case we get

EJ
2π

∫ 2π

0

dδeiδ(0) cos δ = 0

These are just the diagonal elements of the perturbation matrix. The ani-
diagonal elements are obtained from the calculation for n′ = n+ 1. This results
in

EJ
2π

∫ 2π

0

dδe−iδ cos δ =
EJ
2

As a result, the perturbation matrix is

ĤJ =
1
2

(
0 EJ
EJ 0

)
=
EJ
2
σ̂x

This causes an anti-crossing at the degeneracy points. Diagonalizing this per-
turbation matrix gives us the energy splitting, and the new energy eigenstates of
the perturbed qubit. The splitting, as shown in �gure 6 on the following page,
is equal to EJ , and the new eigenstates are the symmetric and anti-symmetric
combinations of the unperturbed eigenstates:

|0〉 =
1√
2

(|n〉 − |n+ 1〉)

|1〉 =
1√
2

(|n〉+ |n+ 1〉)
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Figure 6: Plot of the eigenfunctions of the complete Hamiltonian. The per-
turbation causes anti-crossing at the degeneracy points, leading to two distinct
energy levels.

As stated earlier, equation (6) on page 8 reduces to a Hamiltonian similar to
that of a spin system,equation (7) on page 8. With this new Hamiltonian, we
focus in on just one degeneracy point, and the energy levels look like those
pictured in �gure 7 on the next page.

Moving away from this "sweet spot" causes the energy splitting between states
to change. Again, this can be calculated by diagonalizing the complete Hamil-
tonian of the qubit, equation (7) on page 8. The eigenvalues are

λ1,2 = ±1
2

√
∆2 + ε2

which means the energy splitting is ν =
√

∆2 + ε2.
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Figure 7: The "sweet spot" for the Cooper pair box and rf-SQUID.

3.2 The rf-SQUID

We can build upon the framework of the Cooper pair box just discussed to
describe the rf-SQUID, or �ux qubit. Figure 8 show the basic setup of an rf-
SQUID, which in its simplest manifestation is a JJ with the SC ends shunted
by a SC loop.

Figure 8: The �ux qubit, or rf-SQUID [4].

The circuit is controlled through the use of an external magnetic �ux, usually
generated by a neighboring coil. The �ux through the coil also changes the
phase di�erence, δ, across the junction, due to the relation [4]

δ

2π
=
φ− Φext

Φ0
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This and the fact that the coil has a self-induced �ux through it changes the
energy terms, and thus the Hamiltonian, from that seen in the Cooper pair box.
We end up with [4]

Ĥ =
2e2

CJ
n̂2 +

φ̂2

2LJ
− EJ cos

(
φ̂− Φext

Φ0

)
(9)

where
[
n̂, φ̂

]
= i~ By choosing large values of EJ and setting Φext around Φ0/2,

the last two terms of the Hamiltonian form a double well potential. Finally, by
operating this circuit at low temperatures, one is able to is able to isolate the
two lowest energy levels, e�ectively producing a qubit. The Hamiltonian of the
circuit then reduces to a Hamiltonian similar to equation (7) on page 8. For
the rf-SQUID, however, ε is the bias, or asymmetry of the double well, and for
values of [4]

βL − 1 = EJ/
(
Φ0/4π2L

)
− 1� 1

is given by
ε = −4π

√
6 (βL − 1)EJ (Φext/Φ0 − 1/2) .

The term ∆ represents the tunneling amplitude between the two di�erent well
of the potential, which is also dependent of the barrier height between them and
thus dependent on EJ .

4 Conclusion

This short introduction to SC qubits covered some of the basics of SC qubits.
First it was shown that SC materials can be used to create integrated circuits,
which exhibit quantum mechanical behavior "macroscopically". It is important
for the implementation of these circuits as true qubits that, as already said, the
degrees of freedom behave quantum mechanically, and that they are non-linear.
The non-linearity ensures the isolation of two discrete energy levels.

There is one speci�c element that ful�lls the two requirements named above, and
that is the Josephson Junction. The JJ can be characterized as an inductance
and capacitance connected in parallel. The behavior of this junction is fully
described with two equations, the Josephson equations.

The JJs can be integrated into larger circuit designs to create di�erent types of
SC qubits. Two examples discussed in this paper were charge qubits and �ux
qubits.

The charge qubit consists of a JJ connected to a gate capacitance in series with
a gate voltage. With this voltage source, control of the qubit is possible.

Finally, the �ux qubit is just a JJ with both metallic ends shunted by a SC wire
to create a loop. This qubit is controlled through the generation of an external
magnetic �eld.
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