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Abstract

Quantum computing requires long coherence times. A spintronics approach is considered
promising due to the readily available expertise in solid state physics and possibly long
coherence times [Loss (1998), DiVincenzo (1999)]. We investigate a qubit implementation
as real electron spin in graphene nanoribbon (GNR) quantum dots (QD). This system is
particularly interesting because it allows for non-local QD coupling and a high threshold
for fault-tolerant quantum computing [Trauzettel (2007), Svore (2005)]. QD electron spin
coherence is determined by the coupling to nuclear spins and the lattice. Due to the
vanishing nuclear spin of 12C, coupling to the lattice is particularly important in carbon
based materials.

In a magnetic field, spin states |↑〉 and |↓〉 are split by the Zeeman energy gµBB, which
needs to be absorbed by the lattice to allow for a spin flip. This requires an effective spin-
phonon coupling, which we assume to occur via spin-orbit and electron-phonon interaction
as previously proposed [Khaetskii (2001)]. For magnetic fields perpendicular to the GNR
plane only Rashba-type spin-orbit coupling contributes in lowest order. Starting from
a continuum model, we derive a full phonon field theory for acoustical ribbon modes
at the center of the Brillouin zone. Due to open boundary conditions at the edges of
the quasi-one-dimensional GNR, the usual q2-dependence for out-of-plane modes in bulk
is cut off at the zone center, where we find a linear dispersion. The transverse and
longitudinal sound velocities of the in-plane modes match well with literature values for
comparable systems [Falkovsky (2008), Sánchez-Portal (1999)]. As expected, all modes
approach bulk behavior for wavelengths much smaller than the ribbon width. In lowest
order, only in-plane modes locally dilate or compress the GNR, thereby contributing to
the electron-phonon coupling deformation potential which we express in terms of ribbon
phonon creators and annihilators.

All couplings are treated completely analytically and we find Van Vleck cancellation,
as expected for this time-reversal symmetry conserving system [Van Vleck (1940)]. To
calculate the relaxation rate Γ1 via Fermi’s Golden Rule a quasi-continuous spectrum
of final states is required. This is ensured by the vanishing dependence of the rate on
the ribbon length, thus allowing for a continuous phonon spectrum. For conventional
magnetic fields and ribbon widths (B ∼ 1 T, W ∼ 30 nm), Γ1 goes with B5 and W−1 and
relaxation times T1 = 1/Γ1 range from 180µs to 43 × 103 s. These rather long times are
caused by (i) a vanishing coupling to every second QD state, (ii) Van Vleck cancellation,
(iii) the assumption of phononic vacuum (low temperatures) and (iv) a low density of
states of the contributing modes and encourage a further study of this system, which so
far seems to conform quantum computing coherence times.
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Zusammenfassung

Voraussetzung für einen Quantencomputer sind unter anderem lange Kohärenzzeiten der
Qubits (kurz für Quanten-Bits). In dieser Hinsicht hat eine Realisierung in Form von
Elektronenspins gute Aussichten, denn die Festkörperphysik ist etabliert und vielseitig -
wie von klassischen elektronischen Anwendungen unter Beweis gestellt - und führt oft zu
langen Kohärenzzeiten. Spin Qubits in Graphen Quantenpunkten wären eine konkrete
Implementierung mit weiteren Vorteilen in Sachen Kohärenz und Kopplung entfernter
Quantenpunkte. Weil Kernspin-Effekte in Kohlenstoff schwächer als in konventionellen
Halbleitermaterialien (z.B. GaAs) sind, kommt der Spin-Relaxation durch Spin-Phonon-
Kopplung eine wichtige Rolle zu.

In dieser Arbeit werden zunächst die elektronischen Eigenschaften von Graphen im Detail
erklärt, insbesondere das quasi-relativistische Spektrum der Elektronen sowie das Klein
Paradoxon. Der Spin-Bahn Hamiltonoperator wird aus der Orbitalstruktur hergeleitet
und als Nebenprodukt dieser Berechnungen erhalten wir das Termschema der n = 2
Drehimpulsschale von Kohlenstoff, welche in Graphen einen sp2-Hybrid mit entkoppel-
ten pz Zuständen bildet. Die Entartung von bindenden und antibindenden pz Zuständen
erklärt die verschwindende Energielücke in ausgedehntem Graphen. Für ein quasi eindi-
mensionales Graphenband mit ”Armchair”-Rändern ergibt sich, abhängig von der Anzahl
der Atome entlang der Breite, Graphen mit bzw. ohne Bandlücke. Während es in Graphen
ohne Bandlücke wegen dem Klein Paradoxon schwierig ist, Elektronen einzugrenzen, ist
dies kein Problem in ”Armchair”-Graphenbändern. Weiter wird das Energiespektrum
von solch elektrostatisch eingegrenzten Elektronen hergeleitet: es existieren unendlich
viele transversale Anregungen (d.h. Anregungen in Richtung der Breite), zu denen jeweils
endlich viele longitudinale Anregungen gehören, abhängig von der Wahl der Eingrenzung.

Mit dem Ansatz eines Kontinuummodells leiten wir zum ersten Mal die Dispersion und
explizite Form von Gitterschwingungen innerhalb der Graphenebene bzw. senkrecht dazu
her. Dabei beschränken wir uns auf akustische Phononen im Zentrum der Brillouin Zone,
wo atomare Distanzen vernachlässigbar gegenüber der Wellenlänge sind. Anders als in
ausgedehntem Graphen, wo die Dispersion der Schwingung aus der Ebene heraus im
Zonenzentrum quadratisch verläuft, verhält sich diese Schwingung im Graphenband lin-
ear. Alle Moden verhalten sich für genügend große Wellenzahlen wie in ausgedehntem
Graphen. Die Schwingungen innerhalb der Graphenebene werden mit Phononerzeugern
und -vernichtern quantisiert. Allein diese Moden tragen in führender Ordnung zum De-
formationspotential, einem Elektron-Phonon Kopplungsmechanismus, bei. Wir drücken
diesen Kopplungsmechanismus durch die entsprechenden Erzeuger und Vernichter von
Bandphononen aus und bestätigen die Hermitezität dieses Operators.

Das Deformationspotential koppelt nicht direkt an den Spin. Eine Kombination von
Elektron-Phonon Kopplung und Spin-Bahn Kopplung ermöglicht letztendlich jedoch einen
Spin-Phonon Kopplungsmechanismus, über welchen die Zeeman Energie auf das Gitter
übertragen werden kann. Beim ”Admixture Mechanismus”, welcher von Khaetskii und
Nazarov vorgeschlagen wurde, verändert die Spin-Bahn Kopplung die Elektronzustände
so, dass sich jeweils mehrere Bahnzustände zu neuen Zuständen überlagern. Indem es an
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diese gemischten Zustände koppelt, kann das Deformationspotential den Elektronenspin
umklappen. Das Mischen der Bahnzustände sowie die Kopplung des Deformationspoten-
tials an diese gemischten Zustände werden analytisch und detailliert behandelt. Auch in-
trinsische Spin-Bahn Kopplung leistet einen Beitrag zum Mischen der Elektronzustände,
jedoch nur in höherer Ordnung. In niedrigster Ordnung trägt der Zustand mit entge-
gengesetztem Spin und gleichem Bahnzustand nicht bei, was einer starken Unterdrückung
des Admixture Mechanismus entspricht. Eine weitere Unterdrückung rührt von der Van
Vleck Auslöschung her, welche erwartet wird, da die Elektronenzustände zeitumkehrsym-
metrisch sind. Wir gehen von Phononenvakuum aus und davon, dass nur ein Phonon
erzeugt wird, welches die gesamte Zeeman Energie aufnimmt. Die Zustandsdichte des
einzigen beteiligten Dispersionzweiges ist bei der Zeeman Energie gering , was die Relax-
ation nochmals unterdrückt.

Die Relaxationsrate kann mit Hilfe Fermis Goldener Regel berechnet werden. Sie verhält
sich invers proportional zu Breite des Bandes und ermöglicht so im Prinzip maßgefertigte
Bauteile. Magnetfelder können i.d.R. über gut zwei Größenordnungen eingestellt werden,
so dass die B5-Abhängigkeit der Rate zu Kohärenzzeiten führt, die sich um etwa zehn
Größenordnungen unterscheiden. Dieses Verhalten mit B5 gilt nur für ein bestimmtes
Parameterintervall, in welchem die Zeiten von 180µs bis zu 43 × 103 s reichen. Für Pa-
rameter über das uns numerisch zugängliche Regime hinaus geben wir eine untere Grenze
für die Kohärenzzeit an. Alle Werte genügen dem dritten DiVincenzo Kriterium und dies
legt weitere Untersuchungen dieses Systems nahe, insbesondere da die Grundlagen nun
im Detail verstanden sind.
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1. Introduction

Quantum information is based on the use of quantum bits - qubits - as the smallest unit
of quantum mechanical information. Qubits are a generalization of classical bits in that
they are an arbitrary superposition of 0 and 1,

|ψ〉 = α|0〉+ β|1〉 , (1.1)

where the complex coefficients must satisfy |α|2 + |β|2 = 1 to ensure a normalized state.
Therefore, a qubit incorporates much more information than a classical bit and quantum
computing aims at exploiting this feature. While it is easy to decompose the number 15
into prime factors 3 and 5 this task becomes more and more elaborate for large numbers
and, for classical algorithms, practically impossible for sufficiently large integers1. Due to
the far-reaching implications for cryptography, Peter Shor’s 1994 discovery of an algorithm
for solving this problem efficiently on a quantum computer has, among other promising
applications, boosted interest for quantum information science.

This has culminated in significant progress of the whole field, including the proof-of-
principle demonstration of Shor’s algorithm on a small-scale quantum computer and the
demonstration of quantum communication across a distance of 144 km. A recent proposal
for space-to-ground quantum communications with the International Space Station and
the appearance of commercially available quantum cryptosystems reveal the increasing
maturity of the discipline. To enhance the status of quantum computing from technology
demonstration to exploitation, a full-scale quantum computer is required. Such a device
should conform a list of requirements, the five DiVincenzo criteria. It should have a

1. sufficient number of bits, allow for
2. initialization of the memory before each computation, have a
3. sufficiently low error rate and a
4. universal set of logic gates for computing and provide
5. reliable output of the final result.

Despite their intuitive and basic character, these requirements turn the construction of
a quantum computer into a great challenge. From a physicist point of view, it is also
worthwhile to work towards a quantum computer as this challenge inevitably leads to
new theoretical and experimental insights into fundamental physics. New insights into
qubit coherence, a translation of criterion 3 into physics language, are subject of this
diploma thesis.

1We put the citations here to ensure readability of this introduction. RSA scheme: [Rivest (1978)]; Shor
algorithm: [Shor (1994), Shor (1997)]; implementation of Shor algorithm: [Lanyon (2007), Lu (2007),
Vandersypen (2001)]; demonstration of quantum teleportation: [Bennett (1993), Ursin (2004),
Ursin (2007), Ursin (2009)]; commercial quantum cryptosystems: [IdqCerberis, Magiq8505]; DiVin-
cenzo criteria: [DiVincenzo (1999)];

3



1. Introduction

1.1. Qubit coherence

Coherence refers to the stability of a phase, which determines the interference of waves. A
prominent application of coherence is the laser, where phase stability leads to constructive
interference over large distances. Decoherence is the loss of coherence. Due to the wave
character of quantum mechanics, coherence is intrinsically linked to qubits.

The third DiVincenzo criterion implies that the decoherence time of qubits should be 104

times longer than the clock cycle [DiVincenzo (1999)]. While coherence is completely ir-
relevant to a classical computer, it does affect qubits and therefore it is crucial to quantum
computing. The advantages of a quantum computer come at the necessity for coherent
qubits (at least). We rewrite the qubit state in (1.1) as2

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 ,

where θ determines the ratio |α|2 : |β|2 and φ the relative phase. Both angles are real
numbers and, together, parametrize the three-dimensional unit sphere, the Bloch sphere,
figure 1.1 (a). The poles correspond to the two possible states of a classical bit. In
contrast, the whole sphere is available for a qubit, [Nielsen & Chuang].

(a) (b) (c)

Figure 1.1.: (a): Each point on the Bloch sphere corresponds to a qubit state. The angle
θ determines the contributions from |0〉 and |1〉 while φ denotes their relative
phase. (b): For E0 > E1 the higher energy state |0〉 decays to |1〉 on the relax-
ation timescale T1. This means that an initial superposition will eventually
lose its |0〉 component and hence the relative phase φ. (c): The phase may
also fade without energy exchange, thus leading to a mixture of qubit states.
Such effects further increase the decay rate of the off-diagonal elements in
(1.2), which is characterized by the dephasing timescale T2. If relaxation
induced dephasing is the only contribution it follows that T2 = 2T1.

The Bloch sphere can be used to illustrate the meaning of the times T1 and T2, which
characterize3 the coherence of an initially well-defined qubit. If there is an energy differ-

2A common phase of both summands has no physical meaning and can be omitted.
3The authors of [DiVincenzo (1999)] refer to a set of twelve numbers in order to fully characterize the

coherence of a qubit (in the markovian limit).
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1.2. Spin qubits

ence4, say E0 > E1, the decay |0〉 → |1〉 is described by the relaxation time T1, figure 1.1
(b). In particular, the relaxation process involves energy exchange. The dephasing time
T2 relates to the fading of φ, which leads to a mixed state, figure 1.1 (c). No energy needs
to be exchanged but the process is still irreversible as it leads to an increase of entropy.

Since coherence is the topic of this diploma thesis we go a little into detail. Initially, the
qubit is represented by the density matrix

ρ(t = 0) = |ψ〉〈ψ| =
(

cos2 θ
2

cos θ
2

sin θ
2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)
=

(
|α|2 αβ∗

βα∗ |β|2
)
, (1.2)

corresponding to a pure state. Due to dephasing, φ eventually smears out uniformly and
the density matrix becomes a mixture of states of all phases,

ρ(t→∞) =

∫ 2π

φ=0

dφ

2π
|ψ〉〈ψ| =

∫ 2π

φ=0

dφ

2π

(
cos2 θ

2
cos θ

2
sin θ

2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)
=

(
|α|2 0

0 |β|2
)
.

The off-diagonal elements vanish since eiφ + ei(φ+π) = 0. This is the effect of dephasing.
Unaffected by this consideration, the relaxation |0〉 → |1〉 demands

ρ(t→∞) =

(
0 0
0 1

)
.

Here, the off-diagonal terms vanish, as well, and this means that relaxation is always
accompanied by dephasing. On the other hand, dephasing can occur independently of
relaxation. It can be shown that T2 ≤ 2T1, making T2 the more restrictive time for qubit
coherence. The equality holds if relaxation induced dephasing is the only contribution to
1/T2, [Chirolli (2008), Levitt].

1.2. Spin qubits

For real applications, qubits need to be represented by physical systems with at least
two levels, to which the values 0 and 1 can be assigned. A great many proposals for
physical implementations have been made from pretty much all disciplines of physics
[DiVincenzo (1999)]. These proposals include internal states of ions in a trap [Cirac (1995)],
atoms in optical lattices [Brennen (1999), Jaksch (1999)], nuclear magnetic resonance of
small molecules in solution [Chuang (1998)] and superconducting electrons in a Josephson
Junction [Devoret (2004)], to name just a few.

Loss and DiVincenzo have proposed a solid state implementation using the electron spin
states in coupled QD [Loss (1998)]. This can be called a spintronics implementation in
that it is envisioned to exploit as many techniques of standard electronics as possible but
with spin replacing the electron charge as the relevant physical quantity. With a view to
the DiVincenzo criteria, we shortly comment on the perspective of this proposal5. Due to

4This is particularly the case for Zeeman-split spin qubits, which we focus on (see section 1.2).
5For a more elaborate disquisition, we refer the reader to the original articles, [Loss (1998),

DiVincenzo (1999)].

5



1. Introduction

the applications in classical computing there is an unmatched experience in the fabrication
of solid state devices. Extrapolating to quantum systems, it is natural to assume that a
solid state implementation could be scaled up to a full-scale quantum computer (criterion
1). At sufficiently low temperatures, the spin memory can easily be initialized by applying
a strong magnetic field (criterion 2). Another advantage is the expectedly long coherence
times and control over them via design parameters (criterion 3). This is the topic we deal
with in this diploma thesis. Logic gates can be realized by controlling magnetic fields and
the overlap of distinct QD electrons (criterion 4). The result of a spin-based computation
could be read out by converting the spin to a charge degree of freedom, which can be
measured conveniently (criterion 5).

Electron spin is a two level system with states |↑〉 and |↓〉, which are Zeeman-split in
the presence of a magnetic field, E↑ − E↓ = gµBB. It is natural to assign these states
the values |0〉 and |1〉, respectively (or the other way round), such that one electron spin
represents one qubit. On the other hand, two electron spins form singlet or triplet states
which can also be interpreted as |0〉 or |1〉. Thereby, two electrons represent one qubit.
Here, we focus on the former, more intuitive notion of spin qubits. Due to the Zeeman
splitting, decoherence of such spin qubits is related to spin relaxation, as explained in
section 1.1. Additionally, the nuclear spins of the solid state sample interact with the
spin and randomize its phase. The effects of these two processes are depicted in figures
1.1 (b) and (c), respectively.

1.3. Spin qubits in graphene

To maintain control over the electron in a QD it is highly desirable, although not com-
pelling, that the dot be made of semiconducting material. Indeed, GaAs QD are probably
the most successful and most studied system [Hanson (2007)]. Before we explain what
motivates us to examine QD in graphene, we give a few remarks on graphene, a fascinating
material of its own.

Graphene is a flat, monatomic sheet of carbon. The carbon atoms in graphene are sp2-
hybridized and form a hexagonal lattice as depicted in figures 1.2 and 2.1. The name
originates from graphite and -ene, the suffix used in organic chemistry to describe the
−C=C− character of atomic bonds. Due to its atomic structure, graphene (2D allotrope
of sp2 hybridized carbon) stands in line with fullerenes (0D), carbon nanotubes (1D) and
graphite (3D). In fact, graphite consists of many graphene sheets stacked on one another
and the most common means to produce graphene is to peel such a sheet off graphite
[Geim (2007), Castro Neto (2009)].

Graphene, also called two-dimensional graphite, has been under theoretical study since
more than sixty years ago [Wallace (1947)]. According to the Mermin-Wagner theorem,
however, there can be no crystalline order in two dimensions, thus dooming the physical
existence of two-dimensional graphite from a theoretical point of view [Mermin (1966),
Mermin (1968)]. Although this theorem holds for isolated graphene, there is a way out
by embedding it into a three-dimensional, stabilizing structure. Suspended graphene,
graphene in solution and graphene on a substrate are stable materials that feature elec-

6



1.3. Spin qubits in graphene

(a) (b)

Figure 1.2.: Graphene is a two-dimensional monolayer of sp2-hybridized carbon atoms.
The atoms are separated by 1.42 Å and arranged in benzene rings, forming a
hexagonal structure. Figure (a) shows a computer model of the atomic honey-
comb lattice [Szkopek (2008)] and figure (b) is a transmission electron micro-
scope image of graphene with indication of the atomic structure [Dato (2009)].

tronic properties of freestanding graphene and there is promising progress in the effort to
fully restore freestanding properties [Geim (2007-2), Varykhalov (2008)].

Graphene is a promising material with many possible applications. In particular, its
excellent conductance and its response to external electric fields have triggered progress in
the production of next-generation ballistic field effect transistors [Lin (2008), Wei (2010)].
Also, the surface-to-mass ratio, unchallenged among conducting materials, suggests it as
a main component of supercapacitors [Stoller (2008), Wu (2010)].

The low atomic weight of carbon leads to a small spin-orbit coupling and therefore
long spin coherence times6. Natural carbon consists of 99% 12C and 1% 13C with nu-
clear spins 0 and 1/2, respectively7. The low nuclear spin in carbon relates to weak
decoherence effects that can be even further suppressed by removing the 13C atoms
(e.g. purification techniques or preselection of samples). This makes carbon based
materials interesting for solid state spin qubit implementations. Indeed, a lot of re-
search focuses on spin coherence in carbon nanotubes, diamond vacancies and graphene
[Struck (2010), Steele (2009), Gaebel (2006)].

Due to the Klein paradox the quasirelativistic electronic behavior in graphene makes it
hard to confine particles [Katsnelson (2006)]. A semiconducting spectrum is required to
allow for the confinement of electrons in QD via tunable electrostatic barriers. Among
other approaches to obtain gapped graphene, armchair GNR lead to a semiconducting
spectrum with a typical gap of ∼ 40 meV for a ribbon width of ∼ 30 nm. This specific

6This implication will become clear as we proceed, particularly in chapter 7. Strictly speaking, the
origin of intrinsic spin-orbit coupling is the nuclear charge and not the nuclear/atomic weight, see
(3.3). Of course, these quantities are closely related.

7The radioactive isotope 14C, famous for radiocarbon dating of archaeological samples, is completely
irrelevant for our considerations. It has zero nuclear spin and a natural abundance of only 10−12.
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1. Introduction

system is particularly interesting because Klein tunneling allows for long-range coupling
of distant QD by detuning of intermediate dots [Trauzettel (2007)]. In short, the dot
electrons can couple not only via conduction state tunneling but also via valence state
tunneling. This is a great asset as it enables direct logic operations between distant QD
and since it increases the threshold for fault-tolerant quantum computing [Svore (2005)].

These features motivate us to study coherence times of spin qubits in armchair GNR. As
nuclear spin effects are of minor significance in this system we assume T2 ≈ 2T1 which
makes the relaxation time a good overall measure for qubit coherence. That is why we
focus on spin relaxation, in particular on the admixture mechanism (section 7.1) proposed
by Khaetskii & Nazarov [Khaetskii (2001)].

1.4. Outline

Using a tight-binding ansatz, we review the electronic properties of graphene in chapter 2.
From a generalized tight-binding calculation, that employs all orbitals of the second atomic
shell, the energy level diagram of sp2-hybridized carbon and the spin-orbit hamiltonian
for the conducting pz-orbitals is inferred (chapter 3). In chapter 4, we show how armchair
edges lead to gapped spectrum in armchair GNR and describe electrostatically confined
electrons.

The following chapters are a demonstration of our recent work. Assuming a continuum
model, we derive the classical vibrational properties of a graphene ribbon. For acousti-
cal modes at the center of the Brillouin zone the dispersion and explicit displacements
are obtained (chapter 5). After introducing a field theory for ribbon phonons we turn
to electron-phonon coupling and express the deformation potential in terms of in-plane
phonon modes in chapter 6. Having prepared all its components we turn to the admixture
mechanism and the calculation of a relaxation rate via Fermi’s Golden Rule in chapter 7.
Finally, we summarize our results and indicate the next steps in chapter 8.

Appendices A and B provide supplementary information on the continuum model and
partial differential equations (PDE).
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2. Tight-binding model

In this chapter, we derive the electronic properties that make graphene such an outstand-
ing material. By and large we follow [Castro Neto (2009)] with deviations in explicit
calculations that arise from a lattice orientation consistent with [Trauzettel (2007)].

Graphene is a two-dimensional hexagonal lattice with two carbon atoms per unit cell,
separated by a = 1.42 Å. These two equivalent sublattices are referred to as A and B,
figure 2.1.

real lattice reciprocal lattice

B

A

Figure 2.1.: Graphene is a hexagonal structure with two sublattices A and B. We
choose an orientation that conforms a GNR with armchair edges along the
y-direction. Electron-hole degeneracy occurs at the K and K ′ points in re-
ciprocal lattice. Each corner of the Brillouin zone corresponds to one of these
Dirac points.

The two lattice vectors are

~a1 =

√
3a

2
(1,
√

3) , ~a2 =

√
3a

2
(−1,

√
3)

and the reciprocal lattice vectors are

~b1 =
2π

3a
(
√

3, 1) , ~b2 =
2π

3a
(−
√

3, 1)

such that ~ai ·~bj = 2πδij is satisfied. The three nearest neighbors are

~δ1 =
a

2
(
√

3, 1) , ~δ2 =
a

2
(−
√

3, 1) , ~δ3 = (0,−a) (2.1)
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2. Tight-binding model

for an atom of the A sublattice and −δj for an atom of the B sublattice. The six second-
nearest neighbors are

~a1 , ~a2 , ~a3 = ~a2 − ~a1 , ~a4 = −~a1 , ~a5 = −~a2 , ~a6 = −~a3

for both sublattices and as K and K ′ points we choose

~K =
4π

3
√

3a
(1, 0) , ~K ′ =

4π

3
√

3a
(−1, 0) . (2.2)

2.1. Energy spectrum

We consider a tight-binding hamiltonian with nearest and second-nearest neighbor hop-
ping,

H =
∑
i

Hi , (2.3)

Hi = −t
3∑
j=1

(
a†ibij + b†iaij

)
− t′

6∑
l=1

(
a†iail + b†ibil

)
,

where Hi is the contribution of unit cell i and cannot be considered a hamiltonian of its
own due to lack of hermiticity. Nearest neighbors of atoms in unit cell i are labelled with
indices ij and their coupling constant is t. Accordingly, we use il and t′ for second-nearest
neighbors. While only hopping to the atoms of unit cell i is considered in Hi, hopping from
these atoms is restored via the summation over all unit cells for the total hamiltonian.
The Fourier representations of the fields ai and bi are

ai =
1√
N

∑
~k

e−i
~k·~Ria(~k) , bi =

1√
N

∑
~k

e−i
~k·~Rib(~k) , (2.4)

where N is the number of unit cells and ~k = (kx, ky) is a vector in momentum space. We
substitute these representations in momentum space:

Hi = − t

N

∑
~k,~k′

a†(~k)
(
ei
~k·~Ri−i~k′·(~Ri+~δ1) + ei

~k·~Ri−i~k′·(~Ri+~δ2) + ei
~k·~Ri−i~k′·(~Ri+~δ3)

)
b(~k′)

+b†(~k)
(
ei
~k·~Ri−i~k′·(~Ri−~δ1) + ei

~k·~Ri−i~k′·(~Ri−~δ2) + ei
~k·~Ri−i~k′·(~Ri−~δ3)

)
a(~k′)

− t
′

N

∑
~k,~k′

a†(~k)
(
ei
~k·~Ri−i~k′·(~Ri+~a1) + ei

~k·~Ri−i~k′·(~Ri+~a2) + ei
~k·~Ri−i~k′·(~Ri+~a3)

+ei
~k·~Ri−i~k′·(~Ri+~a4) + ei

~k·~Ri−i~k′·(~Ri+~a5) + ei
~k·~Ri−i~k′·(~Ri+~a6)

)
a(~k′)

+b†(~k)
(
ei
~k·~Ri−i~k′·(~Ri+~a1) + ei

~k·~Ri−i~k′·(~Ri+~a2) + ei
~k·~Ri−i~k′·(~Ri+~a3)

+ei
~k·~Ri−i~k′·(~Ri+~a4) + ei

~k·~Ri−i~k′·(~Ri+~a5) + ei
~k·~Ri−i~k′·(~Ri+~a6)

)
b(~k′) .
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2.1. Energy spectrum

We can exclude the factor ei
~Ri·(~k−~k′)/N from each term1 and note and with the orthonor-

mality relation

δ~k,~k′ =
1

N

∑
~Ri

ei
~Ri·(~k−~k′)

we find

H =
∑
i

Hi

= −t
∑
~k

a†(~k)
(
e−i

~k·~δ1 + e−i
~k·~δ2 + e−i

~k·~δ3
)

︸ ︷︷ ︸
=:Hab(~k)

b(~k)

+b†(~k)
(
ei
~k·~δ1 + ei

~k·~δ2 + ei
~k·~δ3
)

︸ ︷︷ ︸
=:Hba(~k)

a(~k)

−t′
∑
~k

a†(~k)
(
e−i

~k·~a1 + e−i
~k·~a2 + e−i

~k·~a3 + e−i
~k·~a4 + e−i

~k·~a5 + e−i
~k·~a6

)
︸ ︷︷ ︸

=:Haa(~k)

a(~k)

+b†(~k)
(
e−i

~k·~a1 + e−i
~k·~a2 + e−i

~k·~a3 + e−i
~k·~a4 + e−i

~k·~a5 + e−i
~k·~a6

)
︸ ︷︷ ︸

=:Hbb(~k)

b(~k)

which can be written as

H =
∑
~k

(
a†(~k), b†(~k)

)(−t′Haa(~k) −tHab(~k)

−tHba(~k) −t′Hbb(~k)

)
︸ ︷︷ ︸

=:E(~k)

(
a(~k)

b(~k)

)
.

With Mathematica we diagonalize E(~k) and simplify its eigenvalues to

E±(~k) = ±t
√

3 + f(~k) + t′f(~k) ,

where

f(~k) = 2 cos(
√

3kxa) + 4 cos

(√
3

2
kxa

)
cos

(
3

2
kya

)
.

These eigenvalues correspond to the conduction band (+) and valence band (−). A plot

of E±(~k) is shown in figure 2.2.

At the corners of the Brillouin zone (Dirac points K and K ′) we find E+(~k) = E−(~k)

which suggests a taylor expansion around ~K. For ~k = ~K + ~q with |~q| � | ~K|, we find up

1For total strictness we ought to use ~R
(A)
i = ~Ri for the A atom and ~R

(B)
i = ~Ri + ~δ3 for the B atom in

unit cell i. One easily checks that this disambiguation does not change the calculation and we omit
it for readability.
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2. Tight-binding model

Figure 2.2.: Graph (a) is to be compared with the reciprocal lattice in figure 2.1. At
the Dirac points the energy spectrum is degenerate and behaves linear. We
choose t = 2.7 eV, t′ = 0.2t and the black horizontal indicates zero energy.
Indeed, energy degeneracy occurs at E < 0 for t′ > 0, in agreement with
(2.5). A periodic cut for ky = 0 is shown in (b).

to second order in |~q|

E±(~k) ≈ ±t
√

9a2|~q|2
4
− 27a4|~q|4

64
+

9a3(q3
x − 3qxq2

y)

8︸ ︷︷ ︸
≈ 3a|~q|

2
+ 1

2
3a|~q|

2

„
− 27a4|~q|4

64
+

9a3(q3x−3qxq
2
y)

8

«
+t′
(
−3 +

9a2|~q|2

4

)

≈ ± 3at

2
↑

=:~vF

|~q| ± t

− 9

64
a3|~q|3︸ ︷︷ ︸

O(|~q|3)≈0

+
3

8
a2|~q|2

q3
x − 3qxq

2
y

|~q|3︸ ︷︷ ︸
=− sin(3α~q)

+ t′
(
−3 +

9a2|~q|2

4

)

≈ −3t′ ± ~vF |~q|+
(

9t′a2

4
∓ 3ta2

8
sin(3α~q)

)
|~q|2 . (2.5)

With α~q := arcsin qx
|~q| (see figure 2.3 (a)) we confirm

− sin(3α~q) = 4 sin3 α~q − 3 sinα~q = 4

(
qx
|~q|

)3

− 3
qx
|~q|
q2
x + q2

y

|~q|2
=
q3
x − 3qxq

2
y

|~q|3
.

The linear dispersion in the vicinity the K points explains the terminology Dirac points.
Here, the Fermi velocity vF = 3ta

2~ = 8.8× 105 m
s
≈ 1× 106 m

s
(we choose t = 2.7 eV) takes

the role of the speed of light for massless particles. In the next section, we derive the
hamiltonian describing the quasi-relativistic electrons near the Dirac points.

2.2. Dirac hamiltonian

We are interested in a hamiltonian, that describes the quasi-relativistic electrons in the
vicinity of the Dirac points. The momentum of such an electron must satisfy ~k0 = ~K + ~q

12



2.2. Dirac hamiltonian

with |~q| � | ~K| or ~k0 = ~K ′+~q′ with |~q′| � | ~K ′|. The quantities ~q and ~q′ can be understood
as placeholders for momenta with respect to the Dirac points which will be substituted by
operators at the end of our calculation. All Fourier components that deviate significantly
from the Dirac points can be neglected such that the summations in (2.4) simplify to∑

~k

→
∑

~k = ( ~K + ~q) + δ~k

|δ~k| � | ~K|

+
∑

~k = ( ~K′ + ~q′) + δ~k′

|δ~k′| � | ~K′|

and the summations on the r.h.s. do not overlap. We infer

ai
(2.4)
≈ 1√

N

∑
|δ~k| � | ~K|

e−i((
~K+~q)+δ~k)·~Ria(( ~K + ~q) + δ~k) (2.6)

+
1√
N

∑
|δ~k′| � | ~K′|

e−i((
~K′+~q′)+δ~k′)·~Ria(( ~K ′ + ~q′) + δ~k′)

≈ e−i(
~K+~q)·~Ri 1√

N

∑
|δ~k| � | ~K|

e−iδ
~k·~Ria( ~K + δ~k)︸ ︷︷ ︸

=:a1,i

+e−i(
~K′+~q′)·~Ri 1√

N

∑
|δ~k′| � | ~K′|

e−iδ
~k′·~Ria( ~K ′ + δ~k′)︸ ︷︷ ︸

=:a2,i

.

In the second step we have relied on |~q| � | ~K| and |~q′| � | ~K ′|. The fields a1,i and a2,i

are defined in analogy to ai (2.4) and describe particles near the Dirac points. An analog
calculation leads to b1,i and b2,i and we summarize

ai ≈ e−i(
~K+~q)·~Ria1,i + e−i(

~K′+~q′)·~Ria2,i ,

bi ≈ e−i(
~K+~q)·~Rib1,i + e−i(

~K′+~q′)·~Rib2,i .

We now impose t′ = 0 and (2.3) becomes

H = −t
∑
i,j

(
a†ibij + b†iaij

)
. (2.7)

Assuming momenta close to the Dirac points we infer

H = −t
∑
i,j

(ei(
~K+~q)·~Ria†1,i + ei(

~K′+~q′)·~Ria†2,i)(e
−i( ~K+~q)·(~Ri+~δj)b1,i + e−i(

~K′+~q′)·(~Ri+~δj)b2,i)

+(ei(
~K+~q)·~Rib†1,i + ei(

~K′+~q′)·~Rib†2,i)(e
−i( ~K+~q)·(~Ri−~δj)a1,i + e−i(

~K′+~q′)·(~Ri−~δj)a2,i) ,

where we have used a1,ij = a1,i and likewise since these fields vary slowly over the unit

cell such that translations ~δj can be neglected, [Castro Neto (2009)]. Due to momentum

conservation it is clear that an electron cannot hop from K to K ′, such that a†1,ib2,i = 0
and likewise (the summations in (2.6) do not overlap):

H = −t
∑
i,j

a†1,ie
−i( ~K+~q)·~δjb1,i + a†2,ie

−i( ~K′+~q′)·~δjb2,i + b†1,ie
i( ~K+~q)·~δja1,i + b†2,ie

i( ~K′+~q′)·~δja2,i .
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2. Tight-binding model

Since |~q| � | ~K| we expand
∑

j e
−i( ~K+~q)·~δj about ~K and

∑
j e
−i( ~K′+~q′)·~δj analog. With the

explicit quantities (2.1) and (2.2) we find in first order

∑
j

e−i(
~K+~q)·~δj ≈

∑
j

(1− i~δj · ~q)e−i
~K·~δj = −3a

2
(qx − iqy) ,

∑
j

e−i(
~K′+~q′)·~δj ≈ 3a

2
(qx + iqy)

and the hamiltonian further simplifies to

H = −t
∑
i

(
a†1,i, b

†
1,i

)( 0 −3a
2

(qx − iqy)
−3a

2
(qx + iqy) 0

)(
a1,i

b1,i

)
+
(
a†2,i, b

†
2,i

)( 0 3a
2

(qx + iqy)
3a
2

(qx − iqy) 0

)(
a2,i

b2,i

)
.

In the next step we transform to a continuous field:

∑
i

→
∫

dx dy ,(
a1,i

b1,i

)
→

(
a1(~r)
b1(~r)

)
=: Ψ1(~r) ,

~q, ~q′ →
~∇
i
.

We remember that ~q, ~q′ are the momenta with respect to the Dirac points such that the
last assignment is indeed correct as Ψ1,2(~r) describe particles with momenta close to these
points. The hamiltonian becomes

H = −3ta

2

∫
dx dyΨ†1(~r)

(
0 i∂x + ∂y

i∂x − ∂y 0

)
Ψ1(~r)

+Ψ†2(~r)

(
0 −i∂x + ∂y

−i∂x − ∂y 0

)
Ψ2(~r)

= −i3ta
2

∫
dx dyΨ†1(~r)

((
0 1
1 0

)
∂x +

(
0 −i
i 0

)
∂y

)
Ψ1(~r)

+Ψ†2(~r)

((
0 −1
−1 0

)
∂x +

(
0 −i
i 0

)
∂y

)
Ψ2(~r)

= −i~vF
∫

dx dy
(

Ψ†1(~r)~σ · ~∇Ψ1(~r) + Ψ†2(~r)~σ
∗ · ~∇Ψ2(~r)

)
, (2.8)︸ ︷︷ ︸

~K

︸ ︷︷ ︸
~K′

where we have used ~σ := (σx, σy) and ~σ∗ := (−σx, σy) with the standard representation
of Pauli matrices. Due to our orientation of the graphene lattice this result agrees with
the hamiltonian used in [Trauzettel (2007)].

14



2.3. Pseudo-spin and Klein paradox

2.3. Pseudo-spin and Klein paradox

If we go back from second quantization to first quantization the hamiltonian (2.8) becomes

− i~vF~σ · ~∇ψ1(~r) = Eψ1(~r) at the K point, (2.9)

−i~vF~σ∗ · ~∇ψ2(~r) = Eψ2(~r) at the K ′ point.

The eigenstates in momentum space are

ψ1,±(~q) =
1√
2

(
e−iϑ~q/2

±eiϑ~q/2
)
, (2.10)

ψ2,±(~q) =
1√
2

(
eiϑ~q/2

∓e−iϑ~q/2
)
,

where we have used ϑ~q := arcsin qy
|~q| (see figure 2.3 (a)). Indeed we verify

HKψ1,±(~q) = ~vF~σ · ~q
1√
2

(
e−iϑ~q/2

±eiϑ~q/2
)

= ~vF
(
|~q| cosϑ~q

(
0 1
1 0

)
+ |~q| sinϑ~q

(
0 −i
i 0

))
1√
2

(
e−iϑ~q/2

±eiϑ~q/2
)

=
~vF |~q|√

2

(
eiϑ~q + e−iϑ~q

2

(
±eiϑ~q/2
e−iϑ~q/2

)
+
eiϑ~q − e−iϑ~q

2i

(
∓ieiϑ~q/2
ie−iϑ~q/2

))
=

~vF |~q|√
2

(
±(eiϑ~q/2)e−iϑ~q

(e−iϑ~q/2)eiϑ~q

)
= ±~vF |~q|

1√
2

(
e−iϑ~q/2

±eiϑ~q/2
)

= ±~vF |~q|ψ1,±(~q) . X

The helicity operator

h =
~σ · ~q
2|~q|

has the same form as HK , yet with a prefactor 1
2|~q| instead of ~vF . Therefore it is obvious

that its eigenstates are ψ1,±(~q):

hψ1,±(~q) = ±1

2
ψ1,±(~q) . (2.11)

With ψ2,±(~q) and ~σ∗ we obtain equivalent results for HK′ and its according helicity op-
erator h′ such that electrons (ψ1/2,+(~q)) have positive helicity and holes (ψ1/2,−(~q)) have
negative helicity.

We emphasize that the spin operators ~σ and ~σ∗ do not act on real spin but on the two
components of the wave function, which correspond to the A and B sublattices, and is
therefore referred to as pseudo-spin. Pseudo-spin is related to the lattice site. Equations
(2.8) and (2.11) do not hold for arbitrary momenta such that only electrons near the Dirac
points have well-defined helicity.
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2. Tight-binding model

(a) (b)

-

Figure 2.3.: The scattering setup is shown in (a). Top: Particle energy and potential
barrier. Bottom: Angles that enter the wavefunction in regions I, II and
III. Figure (b) shows the tunneling probability as a function of the incident
angle with parameters E0 = 80 meV, V = 160 meV and D = 110 nm, see
(2.12).

With a gauge transformation the wave equation (2.10) can be written as

ψ1,±(~q) =
1√
2

(
1
±eiϑ~q

)
.

Figure 2.3 sketches a particle with energy E0 that is scattered at a square potential
barrier of height V and width D, [Katsnelson (2006)]. In region I the wave function is a
superposition of incident and reflected waves,

ψ
(I)
1 (~r) =

1√
2

(
1

seiϑ~q

)
ei(qxx+qyy) +

r√
2

(
1

se−iϑ~q

)
ei(qxx−qyy) ,

where s := sgnE0. Accordingly, we have

ψ
(II)
1 (~r) =

a√
2

(
1

s′eiϑ~k

)
ei(kxx+kyy) +

b√
2

(
1

s′e−iϑ~k

)
ei(kxx−kyy)

in region II, where s′ := sgn(E0 − V ), kx := qx and ky :=

√(
E0−V
vF

)2

− q2
x. Only a

transmitted wave occurs in region III:

ψ
(III)
1 (~r) =

t√
2

(
1

seiϑ~q

)
ei(qxx+qyy) .

Since the Dirac hamiltonian is of first order the wave function must be continuous (not so
its derivative as for classical second order hamiltonians). We use the continuity conditions

ψ
(I)
1 (x, 0)

!
= ψ

(II)
1 (x, 0) ,

ψ
(II)
1 (x,D)

!
= ψ

(III)
1 (x,D)
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2.3. Pseudo-spin and Klein paradox

to resolve the coefficients r, a, b, t. With Mathematica we find long but simple expres-
sions that depend on ϑ~q and ϑ~k. Due to the definition of kx and ky we have ϑ~k = ϑ~k(ϑ~q)
and the transition probability is given by

T (ϑ~q) = t(ϑ~q)t
∗(ϑ~q)

=
sin2 ϑ~q sin2 ϑ~k

cos2(Dky) sin2 ϑ~q sin2 ϑ~k +
(
1− ss′ cosϑ~q cosϑ~k

)2
sin2(Dky)

.

It is common to express this quantity in terms of the angles α~q and α~k, see figure 2.3. We
use sinϑ~q = cos(π

2
− ϑ~q) = cosα~q, cosϑ~q = sin(π

2
− ϑ~q) = sinα~q and likewise for ϑ~k and

α~k to find

T (α~q) =
cos2 α~q cos2 α~k

cos2(Dky) cos2 α~q cos2 α~k +
(
1− ss′ sinα~q sinα~k

)2
sin2(Dky)

. (2.12)

We note T (α~q) = T (−α~q) and that the barrier becomes completely transparent (T = 1)
for Dky = nπ with integer n. This phenomenon is called the Klein paradox. A plot of
T (α~q) is shown in figure 2.3 (b). For V � E0 it follows that ky � kx and hence α~k ≈ 0
such that T (α~q) simplifies to

T (α~q) ≈
cos2 α~q

cos2(Dky) cos2 α~q + sin2(Dky) + (cos2(Dky) sin2 α~q − cos2(Dky) sin2 α~q)

=
cos2 α~q

cos2(Dky) (cos2 α~q + sin2 α~q)︸ ︷︷ ︸
=1

+ sin2(Dky)︸ ︷︷ ︸
=1

− cos2(Dky) sin2 α~q

=
cos2 α~q

1− cos2(Dky) sin2 α~q
.
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3. Spin-orbit interaction

The hamiltonian that couples the electron’s spin to its orbital motion in graphene can
be derived from symmetry arguments [Kane (2005)] or coupling of the n = 2 s and p
orbitals. We follow the latter ansatz, yet with a different lattice orientation (see (2.1),
(3.2) and [Min (2006)]). There has been a controversy concerning the coupling constants
for intrinsic and extrinsic spin-orbit coupling. As pointed out by Gmitra et al. the d
orbitals cannot be neglected as they might bring the major contribution of 96% to the
intrinsic coupling constant [Gmitra (2009)]. As they do not affect the derivation of the
spin-orbit hamiltonian we can choose appropriate constants in the very end.

As a side effect of our calculations we find the sp2-hybridization and the energy level
diagram in this chapter.

3.1. Tight-binding with s and p orbitals

In (2.7) and subsequent steps, only the pz orbitals are considered. Here, we specify all
s and p hoppings and also include on-site terms which are merely the s and p orbital
energies. The resulting hamiltonian, Hsp, is

Hsp =
∑
i

(a†i,s, a
†
i,px
, a†i,py , a

†
i,pz

) (3.1)

×



ts 0 0 0
0 tp 0 0
0 0 tp 0
0 0 0 tp


︸ ︷︷ ︸

on-site terms


ai,s
ai,px
ai,py
ai,pz

+
∑
j


ts,s ts,px ts,py ts,pz
tpx,s tpx,px tpx,py tpx,pz
tpy ,s tpy ,px tpy ,py tpy ,pz
tpz ,s tpz ,px tpz ,py tpz ,pz


︸ ︷︷ ︸

hopping terms between all s and p orbitals


bij,s
bij,px
bij,py
bij,pz




+
∑
i

(b†i,s, b
†
i,px
, b†i,py , b

†
i,pz

)

×



ts 0 0 0
0 tp 0 0
0 0 tp 0
0 0 0 tp


︸ ︷︷ ︸

=:HB,µ;B,ν


bi,s
bi,px
bi,py
bi,pz

+
∑
j


ts,s ts,px ts,py ts,pz
tpx,s tpx,px tpx,py tpx,pz
tpy ,s tpy ,px tpy ,py tpy ,pz
tpz ,s tpz ,px tpz ,py tpz ,pz


︸ ︷︷ ︸

=:HB,µ;A,ν


aij,s
aij,px
aij,py
aij,pz



.

!
↓

All matrix elements t... are real and we simply label the on-site constants with ts = s
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3. Spin-orbit interaction

and tp = p, and choose the latter as zero energy. The hopping parameters also depend

on the connecting vectors: tµ,ν = tµ,ν(~δj), where µ, ν label the four orbitals. These
transfer integrals are commonly labelled with two latin letters corresponding to the orbital
quantum numbers and a third greek letter that denotes the angular momentum along the
connecting axis, see figure 3.1 (a), [Sutton]. It is crucial to point out that the s orbital
is even with respect to reflections and the pi orbital is even under all reflections but xi,
where it is odd (see for example [Haken & Wolf]). This is why some coupling constants
vanish.

In order to distinguish px, py and pz orbitals one needs to define a coordinate system.

This also allows us to find explicit expressions for tµ,ν(~δj). Be (n
(j)
x , n

(j)
y ) the unit vector

pointing along ~δj. Figures 3.1 (b) and (c) explain how we obtain ts,px(~δ1) = n
(1)
x (spσ).

Similarly1 we obtain the remaining coupling constants in table 3.1.

ts = s tpz ,pz = (ppπ)

tp = p ts,px(~δj) = n
(j)
x (spσ)

ts,s = (ssσ) ts,py(~δj) = n
(j)
y (spσ)

ts,pz = 0 tpx,px(~δj) = (n
(j)
x )2(ppσ) + (n

(j)
y )2(ppπ)

tpx,pz = 0 tpx,py(~δj) = n
(j)
x n

(j)
y ((ppσ)− (ppπ))

tpy ,pz = 0 tpy ,py(~δj) = (n
(j)
y )2(ppσ) + (n

(j)
x )2(ppπ)

Table 3.1.: The matrix elements for s and p orbital hopping along a certain direction
specified by ~δj, [Min (2006)].

With exactly the same procedure that follows (2.7) the matrix elements of Hsp act on
separate fields at K and K ′. We include the summation over j as well as the phases of
said fields to write these matrix elements as2

HA,µ;A,ν(~k) = HB,µ;B,ν(~k) = tµδµ,ν ,

HA,µ;B,ν(~k) = H∗B,µ;A,ν(
~k) =

3∑
j=1

tµ,ν(~δj)e
−i~k·~δj , (3.2)

with ~k ∈ { ~K, ~K ′}. As an example, the matrix element highlighted by the exclamation

mark in (3.1) becomes HA,s;B;s =
∑

j ts,se
−i~k·~δj .

3.2. Eigenenergies and eigenstates

To specify the matrix elements of Hsp at the Dirac points, (3.2), we define α := 3
2
(spσ)

and β := 3
4

((ppσ)− (ppπ)). With

~n(1) =
1

2
(
√

3, 1) , ~n(2) =
1

2
(−
√

3, 1) , ~n(3) = (0,−1)

1Some of the transfer integrals vanish trivially due to the orbitals’ behavior with respect to reflection.
For p-p transfer integrals the central orbital needs to be rotated, too. py = sin θpx′ +cos θpy′ , pz = pz′ ;

2Note that we do not sum over double indices in the next equation.
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3.2. Eigenenergies and eigenstates

B

A

(a)

(b)

(c)

Figure 3.1.: (a): There are only four fundamental transfer integrals between s and p
orbitals. Other integrals vanish for symmetry reasons. All of them have zero
angular momentum along the connection axis (abσ) but the (ppπ) integral.
The signs indicate the orbital’s behavior under reflection. (b): After rotation
about an angle θ the px orbital can be expressed in terms of px′ and py′
orbitals in the rotated system. (c): By virtue of this rotation we can express
the hopping to a neighboring orbital in terms of the fundamental transfer
integrals shown in (a), [Sutton].

we find for example

HA,s;B,px( ~K) =
∑
j

ts,px(~δj)e
−i ~K·~δj = (spσ)

(
n(1)
x e−i

2π
3 + n(2)

x ei
2π
3 + n(3)

x e0
)

= (spσ)

(√
3

2

(
−1

2
−
√

3

2
i

)
+
−
√

3

2

(
−1

2
+

√
3

2
i

)
+ 0 · 1

)
=

= −3i

2
(spσ) = −iα .
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3. Spin-orbit interaction

The other matrix elements are found accordingly and the results are listed in table 3.2.

Orbital A, s A, px A, py A, pz B, s B, px B, py B, pz
A, s s 0 0 0 0 ∓iα −α 0
A, px 0 0 0 0 ±iα −β ∓iβ 0
A, py 0 0 0 0 α ∓iβ β 0
A, pz 0 0 0 0 0 0 0 0
B, s 0 ∓iα α 0 s 0 0 0
B, px ±iα −β ±iβ 0 0 0 0 0
B, py −α ±iβ β 0 0 0 0 0
B, pz 0 0 0 0 0 0 0 0

Table 3.2.: Matrix elements of Hsp near the Dirac points. The upper (lower) sign corre-
sponds to K (K ′).

We do not derive the eigenenergies and eigenstates of the hamiltonian but only check the
results we infer from [Min (2006)], which are listed in table 3.3. With γ± :=

√
s2+8α2±s

2
we

confirm for example |ψ1〉:

H|ψ1〉 =



−γ−s+ α2 + α2

∓iαβ ± iαβ
αβ − αβ

0
0

∓iαγ−
αγ−

0


= −γ−



−γ−
0
0
0
0
±iα
−α
0


= −γ−|ψ1〉 , X

where we have used −γ−s + 2α2 = −
√
s2+8α2−s

2
s + 8α2

4
= s2

4
−
√
s2+8α2

2
s + s2+8α2

4
= γ2

− for
the first component in the second equality.

|ψ#〉 E A, s A, px A, py A, pz B, s B, px B, py B, pz
|ψ1〉 −γ− −γ− 0 0 0 0 ±iα −α 0
|ψ2〉 −γ− 0 ±iα α 0 −γ− 0 0 0
|ψ3〉 −2β 0 ∓i 1 0 0 ∓i −1 0
|ψ4〉 0 0 0 0 1 0 0 0 0
|ψ5〉 0 0 0 0 0 0 0 0 1
|ψ6〉 γ+ γ+ 0 0 0 0 ±iα −α 0
|ψ7〉 γ+ 0 ±iα α 0 γ+ 0 0 0
|ψ8〉 2β 0 ±i −1 0 0 ∓i −1 0

Table 3.3.: Eigenenergies (ordered from low to high) and components of the corresponding
unnormalized eigenstates of Hsp at the Dirac points, [Min (2006)]. The upper
(lower) sign corresponds to K (K ′).

As expected from the hexagonal structure of graphene, the s, px and py orbitals couple
to form an sp2 hybrid. These hybridized states are referred to as σ bands (bonding and
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3.3. Intrinsic and extrinsic perturbations

antibonding). The pz orbitals form the π bands which are decoupled from the σ bands.
Both for K and K ′ the π bands comprise a twofold degenerate manifold at E = 0, which
we refer to as DK and DK′ , respectively. (We do not include real spin, yet.)

Carbon has six electrons, four of which occupy the n = 2 shell under consideration.
With the energies given in [Saito (1992)] we find −γ− = −17.074 eV, −2β = −12.106 eV,
γ+ = 8.206 eV and 2β = 12.106 eV such that rows one through four in table 3.3 correspond
to valence bands and rows five through eight to conduction bands. The resulting energy
level diagram is shown in figure 3.2.

We infer that the Fermi energy corresponds to E = 0 on our energy scale and that the π
bands (rows four and five) are the relevant bands for electron/hole transport. The highest
valence band and the lowest conduction band (π bands) are degenerate and orthonormal,
thus justifying the description of graphene as a gapless semiconductor.

antibonding

isolated carbonisolated carbon hybridized carbon

bonding

Figure 3.2.: The n = 2 orbitals in carbon hybridize to form bonding and antibonding
σ and π bands. This sp2 configuration explains the hexagonal structure of
graphene. The vanishing gap between the highest valence band and the lowest
conduction band justifies the terminology of a gapless semiconductor.

3.3. Intrinsic and extrinsic perturbations

We first address an individual atom i within a graphene sheet. Relativistic effects lead to
the atomic spin-orbit interaction

HAS,i = − e

4(mec)2
~s ·
(
~E × (~pc − e ~A)

)
,

where ~s are standard Pauli matrices that act on real spin and ~pc is the canonical mo-
mentum, see e. g. [Burkard (QII)]. With the kinetic momentum ~p = ~pc − e ~A and spin
~S := ~~s/2 we infer

HAS,i =
e

2(mec)2

~s

2
· (~∇V × ~p) =

e

2~(mec)2
(~∇V × ~p) · ~S . (3.3)
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3. Spin-orbit interaction

The gradient ~∇V is greatest near the nuclei (otherwise V ≈ const). In coordinates ~ri,
which are centered at atom i, this gradient is

~∇V (ri) =
∂V (ri)

∂ri

~ri
ri

such that the atomic spin-orbit operator becomes

HAS,i =
e

2~(mec)2

∂V (ri)

ri∂ri
(~ri × ~p) · ~S =

e

2~(mec)2

∂V (ri)

ri∂ri︸ ︷︷ ︸
=:ξ(ri)

~Li · ~S ,

where ~Li is the angular momentum with respect to atom i. Suitable operators Pi,l with∑
l Pi,l = 1 project the angular momentum on orbital eigenvalues l. Each eigenvalue

corresponds to a different prefactor ξl,

HAS,i =
∑
l

Pi,lξl~Li · ~S .

Finally, we include the summation over all atoms within the graphene sheet and get the
operator that intrinsically couples an electron spin to the orbitals of those atoms:

HAS =
∑
i

HAS,i =
∑
i,l

Pi,lξl~Li · ~S .

Another mechanism is the quantum confined Stark effect, [Fox]. A back / top gate or

impurities in the substrate / cap layer can give rise to an extrinsic electric field ~E = E~ez
perpendicular to the graphene sheet. The z-position of an electron with respect to the
graphene plane relates to an electric dipole ~d = −ez~ez, which interacts with this extrinsic
field:

HEF = −~d · ~E = eEz .

The perturbations HAS and HEF shift the eigenenergies of Hsp (see table 3.3). Next, we
calculate these energy shifts and derive the effective spin-orbit hamiltonian.

3.4. Effective spin-orbit hamiltonian

To obtain an effective spin-orbit hamiltonian we calculate the second order energy correc-
tions3 caused by the perturbations HAS+HEF and express them in terms of operators. We
are only interested in states near the Dirac points and hence concentrate on the π bands.
The second order energy corrections of these states are given by (see e.g. [Nolting 5/2])

E
(2)
m,n;K =

∑
l /∈DK

〈m|(0)HAS +HEF |l〉(0)〈l|(0)HAS +HEF |n〉(0)

E
(0)
DK
− E(0)

l

, (3.4)

3Similar to the explicit calculation of matrix elements below one easily checks that the first order
corrections 〈m|(0)HAS +HEF |m〉(0) vanish. HAS : Lz|m〉(0) = 0 and 〈m|(0)L+ ±L−|m〉(0) = 0. HEF :
see symmetry argument below.
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3.4. Effective spin-orbit hamiltonian

where m,n ∈ DK . An equivalent expression holds for E
(2)
m,n;K′ . The summation runs over

all rows of table 3.3 but rows four and five. Obviously, we need the matrix elements
HAS;m,l and HEF ;m,l. We find for example

〈ψ4|HAS|ψ2〉 = iα〈A, pz|HAS|A, px〉+ α〈A, pz|HAS|A, py〉 − γ− 〈A, pz|HAS|B, s〉︸ ︷︷ ︸
=0

= iα〈pz|ξ Ly
↑

iLy=L+−Lx

Sy|px〉+ α〈pz|ξ Lx
↑

=L+−iLy

Sx|py〉

= α
ξSy√

2
(〈1, 0|L+|1,−1〉 − 〈1, 0|L+|1,+1〉)

+α
iξSx√

2
(〈1, 0|L+|1,−1〉+ 〈1, 0|L+|1,+1〉)

= αξ~(Sy + iSx) = iαξ~S− .

︸ ︷︷ ︸
=~
√

2

︸ ︷︷ ︸
=0︷ ︸︸ ︷ ︷ ︸︸ ︷

In the first step we split the states in their explicit components listed in table 3.3 (fourth
and second row) and use sublattice orthonormality4. Then we simplify HAS = ξ(LxSx +
LySy + LzSz) for a specific site (atom i). Here, only p orbitals are considered such that
we can combine their according projection Pi,1 as well as ξ1 in ξ. We also use the step
operator for angular momentum, L+ := Lx+ iLy, and Li|pi〉 = 0 (i = x, y, z). In the third
equality we substitute (see e.g. [Haken & Wolf])

|px〉 =
1√
2

(|1,−1〉 − |1,+1〉) , |py〉 =
i√
2

(|1,−1〉+ |1,+1〉) , |pz〉 = |1, 0〉

and use L+|l,m〉 =
√
l(l + 1)−m(m+ 1)~|l,m+ 1〉. The result is an operator that acts

on real spin, which has not been considered up to now. We note that the components of
|ψ2〉 have a combined amplitude of

√
γ2
− + 2α2 such that the state is unnormalized.

For HEF we demonstrate

〈ψ4|HEF |ψ1〉 = −γ−〈A, pz|HEF |A, s〉+ iα 〈A, pz|HEF |B, px〉︸ ︷︷ ︸
=0

−α 〈A, pz|HEF |B, py〉︸ ︷︷ ︸
=0

= −γ− 〈pz|eEz|s〉︸ ︷︷ ︸
=:eEz0

= −γ−eEz012 ,

where we respect real spin explicitly with the unit matrix in the last step. The integral
〈pz|z|s〉 is assigned the value z0 and indeed all other integrals 〈pz|z|µ〉 (µ 6= s) vanish for
symmetry reasons, for example

〈pz|z|px〉 ∝
∫ ∞
−∞

pz(x)px(x) dx = 0 ,

since pz(x) is even in x and px(x) is odd. We need to consider the same normalization
as for HAS. An overview of all matrix elements and normalizations is given in table

4Sublattice orthonormality can be confirmed using a representation of Wannier functions centered on
different sites.
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3. Spin-orbit interaction

3.4. The explicit calculation of E
(2)
m,n;K is straightforward and lengthy and therefore we

do not demonstrate it here. The results for K and K ′ are shown in table 3.5. With5

S+ = ((0, 1), (0, 0)) and S− = ((0, 0), (1, 0)) we include real spin explicitly so that we
obtain operators acting on spin states,

E
(2)
m,n;K/K′ → Ê

(2)
m,n;K/K′ .

Orbital |ψ1〉 |ψ2〉 |ψ3〉 |ψ6〉 |ψ7〉 |ψ8〉
〈ψ4| 02 iαξS− iξS+ 02 iαξS− −iξS+

〈ψ5| −iαξS+ 02 −iξS− −iαξS+ 02 −iξS−
〈ψ4| −γ−eEz012 02 02 γ+eEz012 02 02

〈ψ5| 02 −γ−eEz012 02 02 γ+eEz012 02

Amp.
√
γ2
− + 2α2

√
γ2
− + 2α2 2

√
γ2

+ + 2α2
√
γ2

+ + 2α2 2

Table 3.4.: Matrix elements of HAS (top) and HEF (middle) that enter (3.4) at the K
point. According results can be obtained for K ′. For correct normalization
each element needs to be divided by the amplitude listed in the bottom row.

Orbital |ψ4, ↑〉 |ψ4, ↓〉 |ψ5, ↑〉 |ψ5, ↓〉
〈ψ4, ↑ | 0 0 0 0

〈ψ4, ↓ | 0 sξ2

4α2 − ieEz0ξ
α

0

〈ψ5, ↑ | 0 ieEz0ξ
α

sξ2

4α2 0
〈ψ5, ↓ | 0 0 0 0

〈ψ4, ↑ | sξ2

4α2 0 0 − ieEz0ξ
α

〈ψ4, ↓ | 0 0 0 0
〈ψ5, ↑ | 0 0 0 0

〈ψ5, ↓ | ieEz0ξ
α

0 0 sξ2

4α2

Table 3.5.: Energy corrections from (3.4) at K (top) and K ′ (bottom) with the explicit
inclusion of real spin.

Recalling |ψ4(5)〉 = |A(B), pz〉 and with

sξ2

4α2
=

sξ2

9(spσ)2
= −2

|s|ξ2

18(spσ)2︸ ︷︷ ︸
=:λI

= −2λI (s = −8.868 eV)

and

ieEz0ξ

α
= 2i

eEz0ξ

3(spσ)︸ ︷︷ ︸
=:λR

= 2iλR

5For simplicity we set ~ to unity.
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3.4. Effective spin-orbit hamiltonian

we can combine these operators to the effective spin-orbit hamiltonian near the Dirac
points:

H̃SO = −λI14 + λIσzτzsz − λR(σxτzsy − σysx) .

We select the K (K ′) point with τz = +1 (−1), ~σ refers to pseudo-spin (section 2.3) with
σz eigenstates localized on a definite site and ~s describes real spin. Representing both ~σ
and ~s with standard Pauli matrices we confirm

H̃SO,K = −λI14 + λI

(
sz 02

02 −sz

)
− λR

((
02 sy
sy 02

)
−
(
02 −isx
isx 02

))

= −2λI


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+ 2iλR


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

at the K point (see table 3.5).

The constant −λI14 can be omitted as it merely regauges the energy scale of the π bands:

HSO = λIσzτzsz − λR(σxτzsy − σysx) . (3.5)

We emphasize that this result agrees with [Min (2006), Kane (2005)] up to a different
sign6 in front of λR, that results from a lattice orientation consistent with (2.8).

There has been disagreement concerning numerical values of λI and λR [Kane (2005),
Min (2006), Gmitra (2009)]. We stick to the latest results, which suggest λI = 12µeV
and λR = 5µeV × E[ V/nm].

6In table 3.5 the sign in front of λR is different from [Min (2006)]. This arises from an interchange of
A and B sublattices (2.1) and K and K ′ (2.2), (3.2) with respect to the lattice orientation in that
reference.
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4. Electronic states in armchair
nanoribbons

Due to the Klein paradox it is hard to spatially confine electrons in graphene. Recher
and Trauzettel review three systems that allow for confinement via creation of band gap
[Recher (2010)]:

• Nanoribbons with armchair boundaries,

• a disc in single-layer graphene and

• a disc in bilayer graphene.

Focussing on the first system, we explicitly derive the band gap and properties of electro-
statically confined electronic states in this chapter.

4.1. Gapped graphene from armchair boundaries

We consider the hamiltonian (2.9) and follow [Brey (2006)] and [Castro Neto (2009)] in
this section. Assuming the GNR to be aligned with the y-direction, translational invari-
ance ensures plane waves eiky along this direction, see figure 4.1.

Figure 4.1.: Translational invariance ensures plane waves along the y-direction. With
W = (3M + µ)

√
3a the shown ribbon (µ = 1) is gapped or semiconducting.

The overall ribbon width is half a unit cell more than the width for fixed y.
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4. Electronic states in armchair nanoribbons

The ansatz ψ
(K)
A/B(x, y) = χ

(K)
A/B(x)eiky, ψ

(K′)
A/B(x, y) = −χ(K′)

A/B(x)eiky leads to

E

(
χ

(K)
A (x)

χ
(K)
B (x)

)
= −i~vF

(
0 ∂x + k

∂x − k 0

)(
χ

(K)
A (x)

χ
(K)
B (x)

)
= −i~vF

(
(∂x + k)χ

(K)
B (x)

(∂x − k)χ
(K)
A (x)

)
.

We infer

Eχ
(K)
A (x) = −i~vF (∂x + k)χ

(K)
B (x) = −~2v2

F (∂2
x − k2)

E
χ

(K)
A (x) ,

⇒ ∂2
xχ

(K)
A (x) = −

(
E2

~2v2
F

− k2

)
︸ ︷︷ ︸

=: q2n

χA(x) (4.1)

and ∂2
xχ

(K)
B (x) = −q2

nχB(x). Similar equations hold for the K ′ components leading to the
general solutions

χ
(K)
j (x) = aje

iqnx + bje
−iqnx and χ

(K′)
j (x) = cje

iqnx + dje
−iqnx , (j ∈ {A,B}) .

Since an electron cannot exist beyond the ribbon edges its wavefunction must be zero
at the boundaries, just like at the rim of an infinite pot potential. Armchair GNR are
characterized by the fact that their edges involve both A and B sublattices, figure 4.1.

Consequently, both wavefunctions ψj(x, y) = ei
~K·~rψ

(K)
j (x, y)+ei

~K′·~rψ
(K′)
j (x, y) must vanish

for x = 0,W . With K = 4π/3
√

3a (see (2.2)) this requires1

0 = ψj(0, y) = ψ
(K)
j (0, y) + ψ

(K′)
j (0, y) ⇒ 0 = aj + bj − cj − dj , (4.2)

0 = ψj(W, y) = eiKWψ
(K)
j (W, y) + e−iKWψ

(K′)
j (W, y) .

With aj = dj, bj = cj = 0, the former condition is satisfied and the second becomes

0 = aje
i(qn+K)W − aje−i(qn+K)W ,

⇒ e2i(qn+K)W = e2iπñ ,

⇒ qn =
πñ

W
−K , (4.3)

with an integer ñ. We write the width2 as W = (3M + µ)
√

3a, where M is a positive
integer, µ ∈ {−1, 0,+1} and

√
3a = 2.46 Å is the lattice constant, and resolve

qn =
πñ

(3M + µ)
√

3a
− 4π

3
√

3a
=

π√
3a

(
ñ

3M + µ
− 4

3

)
.

1With 2KW = 2(4π/3)(3M + µ) = 8Mπ + µ8π/3 → µ(6 + 2)π/3 → µ2π/3 Trauzettel et al. rewrite
these boundary conditions as
ψ

(K)
j (0, y) = −ψ(K′)

j (0, y) and ψ
(K)
j (W, y) = −e−i2KWψ(K′)

j (W, y) = −e−iµ2π/3ψ
(K′)
j (W, y).

2While we consider the width for a given y it is also possible to deal with the overall width of the ribbon.
The latter case describes the transverse separation of the outmost left atoms from the outmost right
atoms, thus augmenting the width by half a unit cell. From (4.3) one easily confirms that the ribbon
becomes gapless for W̃ = ((3M + 1) + 1/2)

√
3a, [Brey (2006)]. This means that the ribbon shown in

figure 4.1 would be gapped for W and gapless for W̃ . 	
We point out that the quasi-relativistic Dirac hamiltonian only describes the slowly varying envelope
function and does not account for width shifts by half a unit cell. Both ansatzes produce gapped and
ungapped ribbons; the physical reality is to be identified by experiment.
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4.2. Electrostatically confined states

The term in parentheses vanishes for 4(M + µ/3) = ñ ∈ Z, i.e. only for µ = 0. Since
E = ±~vF

√
q2
n + k2 (see (4.1) and chapter 2) a gap

∆E = 2~vF qn (4.4)

between the valence and conduction band opens for µ = ±1. This is a direct result of the
armchair topology. Gapless GNR (µ = 0) are usually referred to as being metallic, and
gapped GNR (µ = ±1) as being semiconducting.

The transverse wavenumber qn can be simplified to

qn =
πñ−KW

W
=
πñ− 4π(M + µ/3)

W
=

π

W

ñ− 4M − µ︸ ︷︷ ︸
=:n

−µ/3


=

π

W
(n− µ/3) , (n ∈ Z) . (4.5)

4.2. Electrostatically confined states

The calculations are based on [Trauzettel (2007)], with emphasis on the explicit form of
electronic states. By virtue of the gap ∆E produced by armchair boundaries (4.4) it is
possible to confine electrons with an electric potential V (y). The low energy electrons in
a QD of length L (figure 4.2) are described by

− i~vF
(
σx∂x + σy∂y 02

02 −σx∂x + σy∂y

)
ψ(x, y) + eV (y)ψ(x, y) = Eψ(x, y) , (4.6)

where σx,y are the standard Pauli matrices (see (2.9)) and

V (y) =

{
VG , 0 ≤ y ≤ L (gate region),
VB , otherwise (barrier region).

We are free to use a negative phase in the K ′ components of the four component en-

velope wavefunction ψ = (ψ
(K)
A , ψ

(K)
B ,−ψ(K′)

A ,−ψ(K′)
B ). As mentioned above translational

invariance ensures plane waves in the y-direction and the solutions of (4.6) are

ψ
(+)
n,k (x, y) = χ

(+)
n,k (x)eiky , ψ

(−)
n,k (x, y) = χ

(−)
n,k (x)e−iky ,

where

χ
(+)
n,k (x) = a(+)

n


1
zn,k
0
0

 eiqnx + b(+)
n


−zn,k

1
0
0

 e−iqnx

+c(+)
n


0
0
−zn,k

1

 eiqnx + d(+)
n


0
0
1
zn,k

 e−iqnx
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4. Electronic states in armchair nanoribbons

Figure 4.2.: The dot architecture is shown in (a). By applying different potentials (lo-
cal potential indicated by color) to the barrier and gate regions it is possi-
ble to confine a particle. The armchair edges are crucial for the band gap
∆E, see (4.4). The energy relations are depicted in (b). The conduction
(valence) band is obtained by adding (subtracting) ~vF q0 to the local bar-
rier/gate potential. A bound conduction band state with energy E exists if
E > VG + ~vF q0 and |E − VB| < ~vF q0 are satisfied.

and χ
(−)
n,k (x) accordingly (see [Trauzettel (2007)]). With

zn,k = ± qn + ik√
q2
n + k2

, (4.7)

E = eV (y)± ~vF
√
q2
n + k2 (4.8)

we confirm e.g. the a
(+)
n -term:

(−i~vF (σx∂x + σy∂y) + eV (y))ψ(K)(x, y)

=

(
~vF

(
0 qn − ik

qn + ik 0

)
+ eV (y)

)(
1

± qn+ik√
q2n+k2

)
ei(qnx+ky)

= ~vF

(
± q2n+ik√

q2n+k2

qn + ik

)
ei(qnx+ky) + eV (y)ψ(K)(x, y)

= ±~vF
√
q2
n + k2

(
1
zn,k

)
ei(qnx+ky) + eV (y)ψ(K)(x, y) = Eψ(K)(x, y) . X (4.9)

The + (−) sign in equations (4.7) to (4.9) corresponds to the conduction (valence), leading
to the band gap ∆E (4.4). Due to (4.8) the longitudinal wavenumber depends on V (y),
k = k(y), and we substitute it by kG (kB) in the gate (barrier) region. In fact, kG is real
and kB is purely imaginary for a bound state:

kG =

√(
E − eVG

~vF

)2

− q2
n , kB = i

√
q2
n −

(
E − eVB

~vF

)2

. (4.10)

For an armchair GNR the boundary conditions (4.2) apply and again we conform them

with a
(±)
n = d

(±)
n , b

(±)
n = c

(±)
n = 0 and a transverse wavenumber qn that is quantized

according to (4.5), where we are free to choose µ = ±1.
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4.2. Electrostatically confined states

A bound state will have the form

ψ(x, y) =


α′nχ

(−)
n,kB

(x)e−ikBy , if y ≤ 0,

β′nχ
(+)
n,kG

(x)eikGy + γ′nχ
(−)
n,kG

(x)e−ikGy , if 0 ≤ y ≤ L,

δ′nχ
(+)
n,kB

(x)eikB(y−L) , if L ≤ y,

(4.11)

where the coefficients follow from the matching conditions at y = 0, L,

αn

(
zn,kB

1

)
= βn

(
1

zn,kG

)
+ γn

(
zn,kG

1

)
,

δn

(
1

zn,kB

)
= βn

(
1

zn,kG

)
eikGL + γn

(
zn,kG

1

)
e−ikGL ,

with αn = α′na
(−)
n , βn = β′na

(+)
n , γn = γ′na

(−)
n and δn = δ′na

(+)
n . These conditions can

be written in matrix form and the determinant of said matrix has to vanish such that
its kernel contains the coefficients. Further calculations follow exactly the supplementary

Figure 4.3.: Solutions of (4.12) are shown in (a) for qn=0. We assume µ = −1 and L = 5W .
There are five bound states for q0 and ∆V = 1.8~vF q0, as indicated by the
circles. Each circle corresponds to another longitudinal excitation. Further
bound states exist for higher transverse excitations qn, e.g. for E − VG ≥
~vF q1 = 4~vF q0 (see (4.5), not shown). The state plotted in (b) corresponds
to the lowest circle, i.e. to the absolute ground state for said ∆V . The
transverse oscillation comes about from the phases e±iKx that need to be
included to conform the boundary conditions for armchair edges, (4.2). Due
to this oscillation we assumeW = 2

√
3a in the last subfigure for perceptibility.

information for [Trauzettel (2007)] and we only repeat that bound conduction band states
exist for E−VG ≥ ~vF qn ≥ |E−VB| and that the determinant vanishes if the wavenumbers
satisfy the transcendental equation

tan(kGL) =
−ikGkB

±
√
q2
n + k2

B

√
q2
n + k2

G − q2
n

, (4.12)

where ± = sgn(E − VB). The normalization condition is∫∫
|eiKxψ(K)

A/B(x, y) + e−iKxψ
(K′)
A/B(x, y)|2dx dy =

1

2
.

Solutions of (4.12) are plotted in figure 4.3.
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5. Classical vibrations in a graphene
nanoribbon

Usual magnetic fields of B ≈ 1 T relate to a Zeeman energy that only allows for coupling
to low energy acoustical phonons at the center of the Brillouin zone. For sufficiently
long wavelengths, the atomic structure becomes negligible such that these low energy
acoustic phonons can be described by a classical continuum model. This model has been
studied extensively in [Landau & Lifschitz] and [Chaikin & Lubensky] and in appendix A
we review some relevant quantities.

5.1. Elastic specifications

We assume the GNR to lie in the x − y-plane as depicted in figure 5.1. Its dimension
along the x-direction is referred to as width W . The length1 along the y-direction is
much larger than W and although physically finite we can assume it to be infinite by
imposing periodic boundaries. Typical values are L ∼ 1µm and W ∼ 30 nm [Jiao (2009),
Kosynkin (2009), Li (2008)]. It is unclear what thickness to assign to a monatomic layer.
Moreover, we need an effective thickness that relates to the elastic properties of graphene.
Since such a value is unknown it is common to use the interlayer spacing in graphite,
h = 3.4 Å [Faccio (2009), Lee (2008), Reddy (2006)].

The mass density per area ρ can be calculated from the atomic distance in graphene,
a = 1.42 Å, and the standard atomic weight of carbon, mC = 12.01 u. There are two
atoms per unit cell (see figure 2.1) and we find

ρ =
2mC

2(3a
√

3a/2)
=

2mC

3
√

3a2
=

2

3
√

3
· 12.01× 1.6605× 10−27 kg

(1.42× 10−10 m)2
= 3.81× 10−7 kg

m2
.

Most elastic constants depend on several parameters like temperature or stress such that
different values occur throughout the literature. Moreover, there are relations between
some constants (see (A.34), (A.35), (A.14) and (A.22)). Eventually, the right elastic
constants will be settled by experiment.

Cited values for Poisson’s ratio σ range from 0.145 to 0.416, [Reddy (2006)] but cumulate
around σ = 0.16 [Lee (2008), Faccio (2009), Kudin (2001)]. This value is also consistent
with relations to other elastic constants.

1Note, that here, L describes the length of the whole ribbon while in the previous chapter we have used
the same letter to specify the QD dimension.
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5. Classical vibrations in a graphene nanoribbon

Continuous plate

Figure 5.1.: For low energy acoustic phonons near the center of the Brillouin zone the
atomic structure of the material becomes negligible such that the continuum
model is justified. For GNR the inequalities L � W � h, where h is the
interlayer spacing of graphite, hold (L ∼ 1µm, W ∼ 30 nm and h = 3.4 Å).

While the most common literature value for Young’s modulus is E = 1 TPa [Lee (2008),
Faccio (2009), Kudin (2001)], a much smaller value, namely 0.5 TPa, has been found in
at least one experiment [Frank (2007)]. In effect, only the product of Young’ s modulus
and thickness, Eh, will enter our calculations. According to [Faccio (2009)] this product
increases significantly with decreasing width of the GNR, starting from a ribbon width of
ten atoms. The width W = 30 nm corresponds to more than a hundred atoms such that
the bulk value Eh = 3.4 TPa Å is a reasonable choice.

With Poisson’s ratio and Young’s modulus fixed we turn to expressions (see (A.34) and
(A.35) below) for the bulk modulus, B, and the shear modulus, µ:

B =
Eh

2(1− σ)
=

3.4 TPa Å

2(1− 0.16)
= 2.024 TPa Å = 12.63

eV

Å2
,

B + µ =
Eh

1− σ2
=

3.4 TPa Å

1− 0.0256
= 3.489 TPa Å = 21.78

eV

Å2
.

These values compare well with literature, where we find B = 11 eV/Å2, µ = 9.4 eV/Å2

and B + µ = 20 ev/Å2 [Gazit (2009), Kudin (2001)]).

So far the choice of elastic constants is self-consistent. It has been shown that the bend-
ing rigidity of graphene, κ, decreases with increasing temperature, [Liu (2009)]. Since
temperature dependencies for (A.22) are not known we do not consider this relation
here but choose the literature value for zero temperature, κ = 1.1 eV [Fasolino (2007),
Gazit (2009), Kudin (2001)]. Below, we list the choice of elastic constants as used in our
calculations.
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5.2. Wave equations and boundary conditions

Mass density ρ = 3.81 · 10−7 kg/m2

Thickness h = 3.4 Å
Young’s modulus E = 1.0 TPa
Poisson’s ratio σ = 0.16
Bulk modulus B = 12.63 eV/Å2

Shear modulus µ = 9.15 eV/Å2

Bending rigidity κ = 1.1 eV

Table 5.1.: Elastic constants that specify graphene. Note that the interlayer spac-
ing of graphite is not necessarily the effective elastic thickness of graphene.
None of the constants (but the mass density) have been definitely settled by
experiment.

5.2. Wave equations and boundary conditions

When subjected to external areal forces Px, Py, Pz a continuous body will be deformed
until internal forces counteract these external forces. We describe the graphene ribbon as
a thin, continuous plate as shown in figure 5.1 such that its equilibrium conditions are

κ42ζ − Pz = 0

for out-of-plane deformations (ζ describes the vertical displacement uz of the neutral plane
of a thin plate, see figure A.2; (A.24); ∆ = ∂2

x + ∂2
y) and

(B + µ)
∂2ux
∂x2

+ µ
∂2ux
∂y2

+B
∂2uy
∂x∂y

+ Px = 0 ,

(B + µ)
∂2uy
∂y2

+ µ
∂2uy
∂x2

+B
∂2ux
∂x∂y

+ Py = 0 .

for in-plane deformations (see (A.36), (A.37)). It is straightforward to obtain wave equa-
tions describing the vibrations of said plate by replacing the external forces per area with
the negative acceleration of these area elements,

Px = −ρüx ,
Py = −ρüy ,
Pz = −ρζ̈ ,

where ρ is the mass density per area. Consequently, out-of-plane vibrations need to satisfy
the partial differential equation (PDE)

ρζ̈ = −κ
(
∂2
x + ∂2

y

)2
ζ , (5.1)

and2 the in-plane vibrations are described by the coupled PDE

ρüx = (B + µ)
∂2ux
∂x2

+ µ
∂2ux
∂y2

+B
∂2uy
∂x∂y

, (5.2)

ρüy = (B + µ)
∂2uy
∂y2

+ µ
∂2uy
∂x2

+B
∂2ux
∂x∂y

.

2These PDE agree with those previously found for carbon nanotubes, which can easily be checked by
assuming an infinite nanotube radius in [Suzuura (2002)] or [Mariani (2009)].
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5. Classical vibrations in a graphene nanoribbon

Obviously, the PDE for out-of-plane vibrations is of fourth order while those for in-
plane vibrations are of second order. This is due to the fact that for a two-dimensional
material there is no direct restoring force for out-of-plane deformations while an in-plane
displacement will be counteracted directly by neighboring material.

Explicit solutions to the PDE will depend on the boundary conditions. Since L � W ,
we assume a ribbon unbounded in the y-direction. For free boundaries no force and no
torque may act on the ribbon edges (x = 0,W ).

For out-of-plane deformations we find explicit expressions by minimizing the free energy,
which would be augmented by a non-zero torque or force. From variation of the free
energy we infer equations (A.25) and (A.26) in appendix A. In the case of a graphene
ribbon these equations simplify to

∂2
xζ + σ∂2

yζ = 0 , (5.3)

∂x∂
2
yζ = 0

along the ribbon edges (x = 0,W ; see (A.28), (A.29)). For in-plane deformations vanishing
forces directly translate to vanishing components σxi (i = x, y, z) of the stress tensor, (see
figure A.1 and equation (A.31)). Since σxz vanishes independently for the ribbon, we infer
the boundary conditions from σxx = σxy = 0:

∂xux + σ∂yuy = 0 , (5.4)

∂xuy + ∂yux = 0

at the ribbon edges (x = 0,W ; see (A.32), (A.33)). Solutions of the PDE and boundary
conditions listed here are shown in figures 5.5 (out-of-plane modes) and 5.8 (in-plane
modes).

5.3. Solving the wave equations

Out-of-plane vibrations obey a PDE of fourth order, (5.1), while in-plane vibrations are
described by two coupled PDEs of second order, (5.2). Since we assume no boundaries in
the y-direction, ux(x, y, t), uy(x, y, t) and ζ(x, y, t) can be defined for y ∈ (−∞, ∞) and
t ∈ (−∞, ∞). Fourier transformation3 of the displacements in variables y and t leads to

ζ̃ =
1

2π

∫∫ ∞
−∞

ζei(ωt−qy) dt dy ,(
ũx
ũy

)
=

1

2π

∫∫ ∞
−∞

(
ux
uy

)
ei(ωt−qy) dt dy ,

where q is a wavenumber and ω an angular frequency. Both equations are independent
from one another since there is no coupling between out-of-plane and in-plane modes.

3We use a mathematician’s definition of Fourier transformation with the same prefactor 1/
√

2π for the
transformation and its inverse.
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5.3. Solving the wave equations

Possible indices xy and ζ for q and ω have been omitted for simplicity. From the inverse
transformations,

ζ =
1

2π

∫∫ ∞
−∞

ζ̃ei(qy−ωt) dω dq ,(
ux
uy

)
=

1

2π

∫∫ ∞
−∞

(
ũx
ũy

)
ei(qy−ωt) dω dq ,

we infer

∂tζ = −iωζ , ∂yζ = iqζ ,

∂tux = −iωux , ∂yux = iqux ,

∂tuy = −iωuy , ∂yuy = iquy ,

and rewrite the displacements as

ζ(x, y, t) = fζ(x)ei(qy−ωt) ,

ux(x, y, t) = fx(x)ei(qy−ωt) ,

uy(x, y, t) = fy(x)ei(qy−ωt) ,

where functions fζ,x,y(x) are defined for x ∈ [0,W ] and describe the transverse (x-) de-
pendence of the deformations. This ansatz4 greatly simplifies (5.1) and (5.2), which we
rewrite as

−ρω2fζ(x) = −κ
(
∂2
x − q2

)2
fζ(x) ,

⇒ −ρω2fζ(x) + κ
(
f ′′′′ζ (x)− 2q2f ′′ζ (x) + q4fζ(x)

)
= 0 ,

⇒ f ′′′′ζ (x)− 2q2f ′′ζ (x) +

(
q4 − ω2ρ

κ

)
fζ(x) = 0 , (5.5)

and

−ρω2fx(x) = (B + µ)f ′′x (x)− µq2fx(x) + iBqf ′y(x) , (5.6)

−ρω2fy(x) = −(B + µ)q2fy(x) + µf ′′y (x) + iBqf ′x(x) .

These are ordinary differential equations (ODE), that only depend on one variable. The
boundary conditions (5.3) and (5.4) simplify to

− q2f ′ζ(x) = 0 ⇒ f ′ζ(x) = 0 , x = 0,W , (5.7)

f ′′ζ (x)− σq2fζ(x) = 0 , x = 0,W , (5.8)

for out-of-plane modes and

f ′x(x) + iσqfy(x) = 0 , x = 0,W , (5.9)

f ′y(x) + iqfx(x) = 0 , x = 0,W (5.10)

for in-plane modes. In order to get real displacements one may consider only the real- or
imaginary part of uζ,x,y(x, y, t).

We have transformed the PDE to simpler ODE, for which provide explicit solutions below.

4In order to get real displacements one may consider only the real- or imaginary part of uζ,x,y(x, y, t) at
the end of the calculation. In combination with phonon creation and annihilation operators, however,
quantities uζ,x,y(x, y, t) only appear in off-diagonal matrix elements such that they may be complex
(equation (6.12)).
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5. Classical vibrations in a graphene nanoribbon

5.3.1. Out-of-plane solutions

To solve the fourth order ODE for fζ we transform (5.5) to a first order ODE for a vector:

gζ(x) :=


fζ(x)
f ′ζ(x)
f ′′ζ (x)
f ′′′ζ (x)

 ,

⇒ g′ζ(x) =


f ′ζ(x)
f ′′ζ (x)
f ′′′ζ (x)
f ′′′′ζ (x)

 =


0 1 0 0
0 0 1 0
0 0 0 1

ω2ρ
κ
− q4 0 2q2 0


︸ ︷︷ ︸

=:A


fζ(x)
f ′ζ(x)
f ′′ζ (x)
f ′′′ζ (x)

 = Agζ(x) .

Applying theorem 1 of appendix B leads to the characteristic polynomial

χA(λ) = det(λI4 − A) = det


λ −1 0 0
0 λ −1 0
0 0 λ −1

−ω2ρ
κ

+ q4 0 −2q2 λ


= λ det

λ −1 0
0 λ −1
0 −2q2 λ

− (−1) det

 0 −1 0
0 λ −1

−ω2ρ
κ

+ q4 −2q2 λ


= λ

((
λ3
)
−
(
2q2λ

))
+

((
q4 − ω2ρ

κ

)
− (0)

)
= λ4 − 2q2λ2 + q4 − ω2ρ

κ
.

The roots of this expression are found via the common formula:

λ2
± =

2q2 ±
√

4q4 − 4
(
q4 − ω2ρ

κ

)
2

= q2 ±
√
ω2ρ

κ

⇒ λ1 =

√
q2 +

√
ω2ρ

κ
, λ2 = −

√
q2 +

√
ω2ρ

κ
,

λ3 =

√
q2 −

√
ω2ρ

κ
, λ4 = −

√
q2 −

√
ω2ρ

κ
.

The radicand of λ3,4 vanishes for q = ±(ω2ρ/κ)
1
4 , leading to a double root of χA. This

special case will be treated later. With single roots only the fundamental system is
{eλ1x, eλ2x, eλ3x, eλ4x}, from which we construct the general solution

fζ(x) = c1e
λ1x + c2e

λ2x + c3e
λ3x + c4e

λ4x .
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5.3. Solving the wave equations

A discrete choice of the coefficients ci is obtained by applying the boundary conditions to
this general solution:

(5.7), x = 0 ⇒ c1λ1 + c2λ2 + c3λ3 + c4λ4 = 0 ,

(5.7), x = W ⇒ c1λ1e
λ1W + c2λ2e

λ2W + c3λ3e
λ3W + c4λ4e

λ4W = 0 ,

(5.8), x = 0 ⇒ c1(λ
2
1 − σq2) + c2(λ

2
2 − σq2) + c3(λ

2
3 − σq2) + c4(λ

2
4 − σq2) = 0 ,

(5.8), x = W ⇒ c1(λ
2
1 − σq2)eλ1W + c2(λ

2
2 − σq2)eλ2W

+c3(λ
2
3 − σq2)eλ3W + c4(λ

2
4 − σq2)eλ4W = 0 ,

To obtain the coefficients, we write this system of equations in matrix form,
λ1 λ2 λ3 λ4

λ1e
λ1W λ2e

λ2W λ3e
λ3W λ4e

λ4W

(λ2
1 − σq2) (λ2

2 − σq2) (λ2
3 − σq2) (λ2

4 − σq2)
(λ2

1 − σq2)eλ1W (λ2
2 − σq2)eλ2W (λ2

3 − σq2)eλ3W (λ2
4 − σq2)eλ4W


︸ ︷︷ ︸

=B(q,ω)


c1
c2
c3
c4

 =


0
0
0
0

 , (5.11)

and demand

detB(q, ω) = 0 . (5.12)

This is an implicit correlation of parameters q and ω, which have been free so far: the
dispersion relation. Roots (q0, ω0) of (5.12) are found numerically by Mathematica via
independent and step-wise variation of parameters q and ω. For any q0 there are discrete
values ω0, thus constituting the different branches of the dispersion, see figure 5.2 (a).

(a) (b)

0

Figure 5.2.: (a) We plot the numerically found solutions of (5.12) into a q-ω-graph, the
dispersion. The arrow indicates the parameters for figure (b), where we plot
the real part of the ζ(x, y, t = 0). This corresponds to the classical deforma-
tion of the ribbon. For the numerics, physical quantities are transformed to
dimensionless quantities (indicated with ” ˜ ”) according to (5.17).

For a given root (q0, ω0) the matrix B(q0, ω0) does not have full rank. Its kernel, which
is found numerically as well, contains coefficients ci that satisfy the boundary conditions
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5. Classical vibrations in a graphene nanoribbon

(5.11). These coefficients implicitly depend on parameters q0 and ω0 and are fixed but up
to a common constant. While this constant is free classically it is fixed for phonons by
a normalization condition (section 6.1). Figure 5.2 (b) shows an unnormalized5 solution
that corresponds to parameters highlighted in figure 5.2 (a). A discussion of these results
will follow in section 5.4.1.

We now turn to the special case q = ±(ω2ρ/κ)
1
4 , for which a double root of χA occurs.

Strictly following theorem 1 we find the fundamental system {eλ1x, eλ2x, 1, x} from which
we construct the solution

fζ(x) = c1e
λ1x + c2e

λ2x + c3 + c4x . (5.13)

The boundary conditions become


λ1 λ2 0 1

λ1e
λ1W λ2e

λ2W 0 1
(λ2

1 − σq2) (λ2
2 − σq2) −σq2 0

(λ2
1 − σq2)eλ1W (λ2

2 − σq2)eλ2W −σq2 0


︸ ︷︷ ︸

=B(ω)


c1
c2
c3
c4

 =


0
0
0
0

 ,

where all q-dependencies in B(q, ω) = B(ω) can be eliminated by substituting q =

±(ω2ρ/κ)
1
4 . The determinant,

detB(ω) = −4σ

(
ω

√
ρ

κ

)5/2

×

√2(−2 + σ)

1− cosh

√2ω

√
ρ

κ

+ σ

√
ω

√
ρ

κ
sinh

√2ω

√
ρ

κ

 ,

has only one root at ω = 0. This only root does not correspond to a vibration of the
ribbon (ω = 0) such that we can neglect the special case of a double root6.

5In fact, the numerically found vector (c1, c2, c3, c4) is normalized to unity, which does not correspond
to the normalization necessary for quantization.

6Another argument is the following: While q = ±(ω2ρ/κ)
1
4 allows for a continuous dispersion (solutions

for any q) the boundary conditions ultimately prevent that. Hence, these solutions cannot form wave
packages necessary to carry the Zeeman energy away.
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5.3. Solving the wave equations

5.3.2. In-plane modes

As for the out-of-plane vibrations above we start by transforming (5.2) to a first order
ODE for a vector:

gxy(x) :=


fx(x)
f ′x(x)
fy(x)
f ′y(x)

 , (5.14)

⇒ g′xy(x) =


f ′x(x)
f ′′x (x)
f ′y(x)
f ′′y (x)

 =


0 1 0 0

µq2−ρω2

B+µ
0 0 −iBq

B+µ

0 0 0 1

0 −iBq
B+µ

(B+µ)q2−ρω2

µ
0


︸ ︷︷ ︸

=:A


fx(x)
f ′x(x)
fy(x)
f ′y(x)

 = Agxy(x) .

Here, we are interested in the first and the third component of gxy(x) as opposed to gζ(x)
above, where we only need the first component. With theorem 2 of appendix B we keep
track of all components. For the characteristic polynomial we find

χA(λ) = λ4 + λ2

(
−2q2 +

ρω2

B + µ
+
ρω2

µ

)
+ q4 − q2ρω2

B + µ
− q2ρω2

µ
+

ρ2ω4

(B + µ)µ
,

and its roots are

λ1 =

√
q2 − ρω2

B + µ
, λ2 = −

√
q2 − ρω2

B + µ
, λ3 =

√
q2 − ρω2

µ
, λ4 = −

√
q2 − ρω2

µ
.

There are two special cases, q = ±
√
ρ/µω and q = ±

√
ρ/(B + µ)ω for which double

roots occur. Again, we treat the more general case with single roots only first.

Then, the invertible matrix S that transforms A to its Jordan canonical form,

S−1AS =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 ,

is given by

S =


−i
q

−i
q

−iq
λ2
3

−iq
λ2
4

−iλ1

q
−iλ2

q
−iq
λ3

−iq
λ4

1
λ1

1
λ2

1
λ3

1
λ4

1 1 1 1

 .

According to theorem 2 the fundamental system is

−i
q
−iλ1

q
1
λ1

1

 eλ1x ,


−i
q
−iλ2

q
1
λ2

1

 eλ2x ,


−iq
λ2
3−iq
λ3
1
λ3

1

 eλ3x ,


−iq
λ2
4−iq
λ4
1
λ4

1

 eλ4x

 , (5.15)
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5. Classical vibrations in a graphene nanoribbon

of which the first and third components constitute fx(x) and fy(x) (see (5.14)). For
simplicity we divide each vector in (5.15) by its first components such that we get

fx(x) = c1e
λ1x + c2e

λ2x + c3e
λ3x + c4e

λ4x , (5.16)

fy(x) = c1
iq

λ1

eλ1x + c2
iq

λ2

eλ2x + c3
iλ3

q
eλ3x + c4

iλ4

q
eλ4x .

As for the out-of-plane modes, the coefficients ci are determined by the boundary condi-
tions,

(5.9), x = 0 ⇒ c1

(
λ1 −

σq2

λ1

)
+ c2

(
λ2 −

σq2

λ2

)
+c3 (λ3 − σλ3) + c4 (λ4 − σλ4) = 0 ,

(5.9), x = W ⇒ c1

(
λ1 −

σq2

λ1

)
eλ1W + c2

(
λ2 −

σq2

λ2

)
eλ2W

+c3 (λ3 − σλ3) e
λ3W + c4 (λ4 − σλ4) e

λ4W = 0 ,

(5.10), x = 0 ⇒ c1(iq + iq) + c2(iq + iq)

+c3

(
iλ2

3

q
+ iq

)
+ c4

(
iλ2

4

q
+ iq

)
= 0 ,

(5.10), x = W ⇒ c1(iq + iq)eλ1W + c2(iq + iq)eλ2W

+c3

(
iλ2

3

q
+ iq

)
eλ3W + c4

(
iλ2

4

q
+ iq

)
eλ4W = 0 .

We write these conditions in matrix form: B(q, ω) · (c1, c2, c3, c4) = (0, 0, 0, 0), where the
matrix B(q, ω) is given by

(
λ1 − σq2

λ1

) (
λ2 − σq2

λ2

)
(λ3 − σλ3) (λ4 − σλ4)(

λ1 − σq2

λ1

)
eλ1W

(
λ2 − σq2

λ2

)
eλ2W (λ3 − σλ3) e

λ3W (λ4 − σλ4) e
λ4W

(iq + iq) (iq + iq)
(
iλ2

3

q
+ iq

) (
iλ2

4

q
+ iq

)
(iq + iq)eλ1W (iq + iq)eλ2W

(
iλ2

3

q
+ iq

)
eλ3W

(
iλ2

4

q
+ iq

)
eλ4W

 .

We continue with the same procedure as for the out-of-plane vibrations. Roots (q0, ω0) of
detB(q, ω) (the dispersion) are plotted in figure 5.3 (a) and a typical in-plane vibration
is shown if figure 5.3 (b). Again, the coefficients ci are determined but up to common
constant.

For the special case with q = ±
√
ρ/µω, the Matrix S that transforms A to its Jordan

canonical form,

S−1AS =


0 1 0 0
0 0 0 0
0 0 λ2 0
0 0 0 λ1

 ,
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(b)(a)

Figure 5.3.: (a) Plot of the dispersion. The arrow indicates the parameters for figure
(b), where we plot the real part of the ~u(x, y, t = 0). This corresponds to
the classical deformation of the ribbon. Color indicates the magnitude of
the displacement. For the numerics, physical quantities are transformed to
dimensionless quantities (indicated with ” ˜ ”) according to (5.20).

is given by

S =


1 0 −i

q
−i
q

0 1 −iλ2

q
−iλ1

q

0 i
q

1
λ2

1
λ1

0 0 1 1

 .

From the first and third component of the fundamental system


1
0
0
0

 ,




0
1
i
q

0

+


1
0
0
0

x

 ,


−i
q
−iλ2

q
1
λ2

1

 eλ2x ,


−i
q
−iλ1

q
1
λ1

1

 eλ1x


we infer

fx(x) = c1 + c2x+ c3
−i
q
eλ2x + c4

−i
q
eλ1x ,

fy(x) = c2
i

q
+ c3

1

λ2

eλ2x + c4
1

λ1

eλ1x .

The matrix containing the boundary conditions, B(ω), is now independent of q. Its
determinant has two zeros but the boundary conditions can be satisfied only for discrete
q values such that there is no continuous dispersion. Consequently, these solutions cannot
form wave packages that carry the Zeeman energy away such that we can neglect this
special case. The same holds for the other special case, q = ±

√
ρ/(B + µ)ω, that leads

to a purely imaginary determinant with several discrete roots.
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5. Classical vibrations in a graphene nanoribbon

5.4. Properties of ribbon modes

In this section, we discuss the dispersion relations and vibrational modes obtained from
the above solution. There is no experimental data on GNR but we can compare our
results to carbon nanotubes and bulk graphene. We turn to the out-of-plane modes first
and the in-plane modes are treated afterwards.

5.4.1. Out-of-plane modes

In order to generalize our theory and to ease calculations we transform to dimensionless
quantities:

x→ x̃ =
x

W
, λi → λ̃i = λiW (i ∈ {1, 2, 3, 4}) , q → q̃ = qW , (5.17)

ω → ω̃ = ω

√
ρ

κ
W 2 , κ, ρ→ κ̃, ρ̃ = 1

As a consequence, the width does not enter the calculations and we obtain scalable results.
Concrete numbers for any ribbon width W are recovered by undoing these substitutions:

ω = ω̃

√
κ

ρ

1

W 2
,

λ1 =
λ̃1

W
=

√
q̃2 +

√
ω̃2 ρ̃

κ̃

W
=

√
q̃2

W 2
+

√
ω̃2

W 4
=

√
q2 +

√
ω2ρ

κ
. X

The frequency, the energy and the magnetic field that relate to ω̃ are

ω = ω̃

√
κ

ρ

1

W 2
= 6.80× 1011 ω̃

W [ nm]2
1

s
= 2π × 108

ω̃

W [ nm]2
GHz ,

E = ~ω = 4.48× 10−4 ω̃

W [ nm]2
eV ,

B =
~ω
gµB

= 3.87
ω̃

W [ nm]2
T , (5.18)

where g = 2 is the g-factor in graphene and µB is the Bohr magneton, [Zhang (2006)].

Both graphene lattice vectors have length
√

3a (see figure 2.1) such that the Brillouin
zone extends to π/(

√
3a). From q ≤ π/(

√
3a) we infer

q̃ ≤ π√
3a
W =

π√
3× 1.42 Å

W [ nm]× 10−9 m =
10π√

3× 1.42
W [ nm] = 12.8W [ nm] ,

⇒ q̃30 ≤ 12.8× 30 = 384 (for W = 30 nm). (5.19)

In figure 5.4 we plot the dispersion dot for dot, similar to figure 5.2 but with much
smaller steps. Four different plots are shown with q̃ ∈ [0; 50] on the largest scale. The
continuum model is expected to yield good results at the center of the Brillouin zone where
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5.4. Properties of ribbon modes

wavelengths are large compared to the unit cell such that the atomic structure becomes
negligible. Whether q̃ = 50 corresponds to the zone center depends on the ribbon width,
(5.19). For W = 30 nm we do not attribute this value to the zone center. Obviously, there
are distinct branches which correspond to excitations along the transverse ribbon direction
(shown in figure 5.5). The lowest branch has a finite steepness at the origin. The linear
behavior is confirmed by expanding detB(αq̃, αω̃) into a series of α. For infinitesimal
deviations from the zone center only the lowest order is relevant. It has analytical roots
for ω̃ = 1.39 q̃. We infer that the finite width of the GNR leads to a cut-off mechanism
at the zone center. The associated sound velocity is

vζ(q = 0) =
dω

dq

∣∣∣∣
q=0

=

√
κ

ρ

1

W

dω̃

dq̃

∣∣∣∣
q̃=0

=
945

W [ nm]

m

s
,

⇒ vζ,30 =
945

30

m

s
= 31.5

m

s
.

It increases inversely with ribbon width such that zero sound velocity is recovered for
sufficiently large W , in agreement with previous results for bulk graphene. Away from
the zone center all data points can be fitted with parabolas which matches the idea that
the ribbon mimics bulk for wavelengths small compared to the ribbon width.

(a) (b)

(d)(c)

Figure 5.4.: (a)-(d): The dispersion of the out-of-plane modes on four different scales.
Figures (c) and (d) highlight the linear dispersion of the lowest branch at the
zone center, which we confirm analytically (indicated by the line).

For a ribbon of length L, possible wavenumbers are q = ±2π/L, ±4πL, . . . , ±2nπ/L
(n ∈ N). That is, the density of states in q-space is D(q) = dN/dq = 2/(2π/L) = L/π,
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5. Classical vibrations in a graphene nanoribbon

where N is the absolute number of possible phonon states. With D(ω)dω = dN = D(q)dq
we derive the density in ω-space,

D(ω) = D(q)
dq

dω

∣∣∣∣
ω

=
L

π dω/dq|ω
=

√
ρ

κ

LW

π dω̃/dq̃|ω̃
.

By virtue of polynomial fits and the above formula we obtain the density of states for
each branch in the dispersion. In figure 5.6, we plot the sum of all branches up to
ω̃ = 125, corresponding to B = 0.5 T for W = 30 nm, (5.18). The flat dispersion of
higher transverse modes leads to a divergent density of states where said modes become
accessible. In contrast, the non-zero sound velocity of the lowest branch leads to a finite
density of states at zero frequency, namely D(ω = 0) = 10.1 × 10−9s (for L = 1µm,
W = 30 nm), corresponding to D(E = 0) = 15.3/ µeV.

Figure 5.5.: (a)-(d): These plots correspond to the four lowest transverse excitations (as
in figure 5.4 (b)) at q̃ = 1.
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0808

0.72

Figure 5.6.: The finite sound velocity of the out-of-plane mode at zero energy leads to
a non-divergent density of states. Higher transverse excitations begin flat,
however, thus causing the density of states to diverge at these energies.

5.4.2. In-plane vibrations

As for the out-of-plane modes, we generalize our calculations by transforming to dimen-
sionless quantities:

x→ x̃ =
x

W
, λi → λ̃i = λiW (i ∈ {1, 2, 3, 4}) , q → q̃ = qW , (5.20)

ω → ω̃ = ω

√
ρ

Eh
W , ρ→ ρ̃ = 1 , µ→ µ̃ =

µ

Eh
, B → B̃ =

B

Eh
.

The substitutions can be undone via

ω = ω̃

√
Eh
ρ

1

W
, (5.21)

λ1 =
λ̃1

W
=

√
q̃2 − ρ̃ω̃2

B̃+µ̃

W
=

√
q̃2

W 2
− ω̃2Eh

(B + µ)W 2
=

√
q2 − ρω2

B + µ
. X

The frequency, the energy and the magnetic field corresponding to ω̃ are calculated via

ω = ω̃

√
Eh
ρ

1

W
= 2.99× 1013 ω̃

W [ nm]

1

s
= 2π × 4.76

ω̃

W [ nm]
THz ,

E = ~ω = 1.97× 10−2 ω̃

W [ nm]
eV ,

B =
~ω
gµB

= 1.70× 102 ω̃

W [ nm]
T . (5.22)

Equation (5.19) and following remarks hold here, as well. Figure 5.7 shows the dispersion
of in-plane modes on different scales. There are infinitely many branches originating from
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5. Classical vibrations in a graphene nanoribbon

different values ω̃. For large q̃, all of them converge against a common linear line (green
line in figure 5.7 (a)). Our interpretation is that ω̃(q̃ = 0) is associated with an excitation
that becomes negligible for large q̃, thus explaining the asymptotic behavior. An exception
are the two lowest branches which originate from ω̃ = 0 and form a line slightly below
said asymptote.

Figure 5.7.: (a)-(c): The dispersion of the out-of-plane modes on three different scales. For
large wavenumbers, all but the two lowest modes converge against the green
line indicated in (a). We also identify lines in the dispersion (indicated in (d)),
where the modes are of predominantly transverse / longitudinal character
(”TA” / ”LA”).

Another feature are the two lines indicated in figure 5.7 (d). For q̃ > 10, the shallower line
is constituted by the two lowest branches. One of those branches supports the steeper
line up to q̃ ≈ 3, from where it transitions to the shallower line. The steeper line is
supported piecewise by different branches. For example from q̃ ≈ 3, where said transition
occurs, up to q̃ ≈ 8 it is constituted by the branch originating from ω̃ ≈ 3.1 and so
on. From the vector fields in figure 5.8 it appears that mainly transverse displacements
occur on the shallower line such that we associate it with the transverse acoustical mode
in bulk (”TA”). Modes that contribute to the steeper line feature mainly longitudinal
displacements in the supporting interval. Accordingly, we relate the steeper line with the
longitudinal acoustical bulk mode (”LA”). Pure longitudinal or transverse modes do not
occur, however, since the ribbon boundaries always lead to a coupling.

To check our interpretation, we calculate the sound velocities v = dω/dq corresponding
to the ”LA” and ”TA” lines and compare them with literature values for bulk graphene
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5.4. Properties of ribbon modes

Figure 5.8.: We plot vibrations with predominant transverse / longitudinal character for
different wavenumbers. Figures (a) - (c) correspond to transverse modes and
(d) - (f) to longitudianl modes. The wavenumbers are q̃ = 1 for (a) and (d),
q̃ = 4 for (b) and (e) and q̃ = 9 for (c) and (f). As in figure 5.3, color indicates
the magnitude of the displacement.

and carbon nanotubes, see table 5.2. Although these systems are different, we expect
matchable results due to the same underlying atomistic structure. Since both ω and q go
inversely with W , the in-plane sound velocities are independent of the ribbon width. We
also point out that ω and hence v is proportional to

√
Eh, see (5.21). In section 5.1 we

have already mentioned that these elastic constants have not been settled, yet. Therefore
we calculate both sound velocities for Eh = 3.4 TPa Å (the choice we made in 5.1) and
for Eh = 1.7 TPa Å (as can be inferred from [Frank (2007)]).

In analogy to the out-of-plane modes, the density of states is obtained via

D(ω) = D(q)
dq

dω

∣∣∣∣
ω

=
L

π dω/dq|ω
=

√
ρ

Eh
L

π dω̃/dq̃|ω̃
(5.23)

and polynomial fits to the branches in the dispersion. In figure 5.9, we plot D(ω̃) up to
ω̃ = 3.0, corresponding to a magnetic field of 17 T for W = 30 nm, (5.22). A magnetic
field as we used it for the out-of-plane modes (B = 0.5 T) relates to a much smaller
ω̃ ≈ 0.1. The flat dispersion of the lowest branch leads to a divergent density of states at
zero energy, figure 5.9.
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vTA = 19.1 km/s vLA = 29.6 km/s vLA/vTA = 1.55 Eh = 3.4 TPa Å
vTA = 13.5 km/s vLA = 20.9 km/s vLA/vTA = 1.55 Eh = 1.7 TPa Å
vTA = 12.2 km/s vLA = 19.5 km/s vLA/vTA = 1.60 [Falkovsky (2008)]
vTA = 14 km/s vLA = 24 km/s vLA/vTA = 1.7 [Sánchez-Portal (1999)]

Table 5.2.: We compare the sound velocities indicated in figure 5.7 (d) with previ-
ous values for bulk graphene ([Falkovsky (2008)], symmetry arguments) and
carbon nanotubes ([Sánchez-Portal (1999)], density functional theory). For
Eh = 3.4 TPa Å, our results lie above these values but are of the same order.
For Eh = 1.7 TPa Å, previous values match well with our results. The ratio
vLA/vTA is independent of Eh and agrees with cited values.

10

divergent

.03

Figure 5.9.: The density of states of the in-plane modes diverges at zero energy, in contrast
to the out-of-plane modes. Further divergences occur at energies where the
dispersion is flat (figure 5.7).
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6. Electron-phonon coupling

There are several mechanisms that lead to electron-phonon coupling, including piezo-
electric electron-phonon interaction, bond length change and the deformation potential
[Yu & Cardona, Suzuura (2002)]. While the first mechanism does play a role for GaAs
QD [Khaetskii (2001)], it does not occur in graphene where the unbiased unit cell does
not allow for piezo effects. The other two mechanism are expected to contribute to spin
relaxation via the admixture mechanism. For simplicity, we focus on the deformation
potential to which only in-plane modes contribute in lowest order.

First, we normalize the classical in-plane vibrations of the previous chapter. From these
orthonormal modes we establish the field theory for ribbon phonons with phonon creation
and annihilation operators. We also derive the deformation potential and express it in
terms of said phonon operators to obtain an electron-phonon coupling hamiltonian.

6.1. Mode orthonormality

We specify ribbon modes via (α, q), where α labels dispersion branches and q the wavenum-

ber. As mentioned in section 5.3, the coefficients c
(α,q)
i are determined up to a common

constant. Classically, this constant can have any value. Mathematica provides definite
output by normalizing the vector (c1, c2, c3, c4)

(α,q) to unity. From this output we calculate
the real quantity

N (α,q) :=

√
1

W

∫ W

0

(
f

(α,q)
x (x)

(
f

(α,q)
x (x)

)∗
+ f

(α,q)
y (x)

(
f

(α,q)
y (x)

)∗)
dx . (6.1)

With this definition, functions f
(α,q)
x,y (x)/N (α,q) satisfy the orthonormality relation that we

require for a phonon field theory,

1

W

∫ W

0

(
f

(α,q)
x (x)

N (α,q)

(
f

(β,q)
x (x)

N (β,q)

)∗
+
f

(α,q)
y (x)

N (α,q)

(
f

(β,q)
y (x)

N (β,q)

)∗)
dx = δα,β . (6.2)

While the normalization is obvious from the definition of N (α,q), orthogonality is an inher-
ent property of ODE (5.6) that even holds for both solitary summands but is not further
discussed here. We also point out the behavior under complex conjugation,(

f (α,q)
x,y (x)

)∗
= f (α,−q)

x,y (x) . (6.3)
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6. Electron-phonon coupling

(a)

(c)

(b)

(d)

0.05

0.04

0.03

0.02

0.01

0.20

3.0

Figure 6.1.: (a) Only the two lowest phonon branches are available for conventional mag-
netic fields (B ∝ ω̃, B = 1T ⇒ ω̃ = 0.18 for W = 30 nm). (b) The numeri-
cally found normalizations (6.1) for the branches in (a). Fits of N (1,q̃)(ω̃) and
N (2,q̃)(ω̃) for ω̃ ∈ [0; 0.2] are shown in (c) and (d).

According to (5.22), a possible ω̃-dependence of N (α,q̃) translates into a B-dependence
that might influence the spin relaxation rate. Figure 6.1 shows N (α,q̃)(ω̃) for the three
lowest branches up to1 ω̃ = 3. Only the two lowest branches will be relevant as ω̃ ≈ 0.2
for W = 30 nm and B ≈ 1 T. We fit both branches in the interval ω̃ ∈ [0; 0.2], N (1,q̃)(ω̃)
with the power law aω̃b and N (2,q̃)(ω̃) with a constant:

N (1,q̃)(ω̃) ≈ 0.274 ω̃ ,

N (2,q̃)(ω̃) ≈ 7.73 . (6.4)

To check these results with a discrete example we consider ω̃ = 0.18 (B = 1 T for W =
30 nm). The modes for this parameter are (α = 1, q̃ = 0.83) and (α = 2, q̃ = 0.18). By

1Where ω̃ = ω̃(q̃) is a monotone function of q̃ we can plot N (α,q̃) with respect to its ω̃-dependence:
N (α,q̃) = N (α,q̃(ω̃)) = N (α,q̃)(ω̃). All three branches shown in figure 6.1 are monotone in this interval.
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6.2. Phonon field theory

normalizing both modes with the above fits, the integrals (6.2) become

∫ W̃=1

0

(
f

(1,0.83)
x (x̃)

N (1,0.83)

(
f

(1,0.83)
x (x̃)

N (1,0.83)

)∗
+
f

(1,0.83)
y (x̃)

N (1,0.83)

(
f

(1,0.83)
y (x̃)

N (1,0.83)

)∗)
dx̃ = 0.995 ≈ 1 , X

∫ W̃=1

0

(
f

(2,0.18)
x (x̃)

N (2,0.18)

(
f

(2,0.18)
x (x̃)

N (2,0.18)

)∗
+
f

(2,0.18)
y (x̃)

N (2,0.18)

(
f

(2,0.18)
y (x̃)

N (2,0.18)

)∗)
dx̃ = 0.997 ≈ 1 . X

∫ W̃=1

0

(
f

(1,0.83)
x (x̃)

N (1,0.83)

(
f

(2,0.18)
x (x̃)

N (2,0.18)

)∗
+
f

(1,0.83)
y (x̃)

N (1,0.83)

(
f

(2,0.18)
y (x̃)

N (2,0.18)

)∗)
dx̃ = 0 . X

For simplicity, we absorb the normalization in the functions from now on:

f
(α,q)
x,y;N(x) := f (α,q)

x,y (x)/N (α,q) → f (α,q)
x,y (x) . (6.5)

6.2. Phonon field theory

Here, we present how to quantize the classical in-plane modes of chapter 5. We follow
the field theory as described in standard textbooks [Rössler, Nolting 7]. Where absolutely
necessary we disambiguate operators from scalars via ” ˆ ”, e. g. in rα,q → r̂α,q, but in
general the character of a quantity will be clear from its context and we use no special
notation for operators.

6.2.1. Normal coordinates

From the explicit representation of mode (α, q),

(u(α,q)
x , u(α,q)

y )(x, y, t) =
(
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
ei(qy−ωt) ,

we construct the general in-plane ribbon vibration ~S = (Sx, Sy) as a linear combination
of all possible in-plane modes:

~S(x, y, t) =
∑
α,q

r̃α,q
(
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
ei(qy−ωt)

=
∑
α,q

rα,q(t)
(
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
eiqy . (6.6)

In the second step, the time-dependence is absorbed in the amplitude, rα,q = r̃α,qe
−iωt,

such that it satisfies the equation of motion of the simple harmonic oscillator,

r̈α,q(t) + ω2
α,qrα,q(t) = 0 . (6.7)
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6. Electron-phonon coupling

We multiply (6.6) by e−iq
′y/L and integrate the y-coordinate,∫ L/2

−L/2

~S(x, y, t)e−iq
′y

L
dy =

∑
α,q

rα,q(t)
(
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
) ∫ L/2

−L/2

ei(q−q
′)y

L
dy︸ ︷︷ ︸

= δq,q′

=
∑
α

rα,q′(t)
(
f (α,q′)
x (x)~ex + f (α,q′)

y (x)~ey

)
.

After multiplication with (f
(β,q′)
x (x)~ex+f

(β,q′)
y (x)~ey)

∗, we integrate the x-coordinate. With
(6.2), (6.3) and (6.5) we find∫ W

0

∫ L/2

−L/2

(Sx(x, y, t)f
(β,−q′)
x (x) + Sy(x, y, t)f

(β,−q′)
y (x))e−iq

′y

L
dy dx

=
∑
α

rα,q′(t)

∫ W

0

(
f (α,q′)
x (x)

(
f (β,q′)
x (x)

)∗
+ f (α,q′)

y (x)
(
f (β,q′)
y (x)

)∗)
dx︸ ︷︷ ︸

=Wδα,β

= Wrβ,q′(t) .

Now, the explicit form of the normal coordinate can be resolved:

rα,q(t) =

∫ W

0

∫ L/2

−L/2

(Sx(x, y, t)f
(α,−q)
x (x) + Sy(x, y, t)f

(α,−q)
y (x))e−iqy

LW
dy dx

=

∫ W

0

∫ L/2

−L/2

~S(x, y, t) ·
(
~u(α,q)(x, y, 0)

)∗
LW

dy dx .

The kinetic energy of the ribbon is given by the integral of its velocities and can be
expressed in terms of normal coordinates:

T =
ρ

2

∫ W

0

∫ L/2

−L/2

∣∣∣ ~̇S(x, y, t)
∣∣∣2 dx dy =

=
ρ

2

∫ W

0

∫ L/2

−L/2

∑
α, q
β, q′

ṙα,qṙ
∗
β,q′

(
f (α,q)
x

(
f (β,q′)
x

)∗
+ f (α,q)

y

(
f (β,−q′)
y

)∗)
ei(q−q

′)y︸ ︷︷ ︸
⇒LWδα,βδq,q′

dy dx

=
ρLW

2

∑
α,q

|ṙα,q(t)|2 .

An analog form for the potential energy2 V leads to the lagrangian

L = T − V =
ρLW

2

∑
α,q

(
ṙα,q(t)ṙ

∗
α,q(t)− ω2

α,qrα,q(t)r
∗
α,q(t)

)
.

2The potential energy is obtained straightforward via atomic force constants (connecting ”springs”).
Although perfectly justified for a graphene ribbon, this ansatz is different from the continuum model
and consequently we do not show it here. The interested reader may refer to standard textbooks.
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6.2. Phonon field theory

We infer the canonical momentum

pα,q(t) =
∂L

∂ṙα,q(t)
= ρLW ṙ∗α,q(t)

and the hamiltonian of the simple harmonic oscillator,

H =
∑
α,q

pα,q(t)ṙα,q(t)− L

=
∑
α,q

(
pα,q(t)p

∗
α,q(t)

ρLW
−
(
pα,q(t)p

∗
α,q(t)

2ρLW
−
ρLW ω2

α,qrα,q(t)r
∗
α,q(t)

2

))

=
∑
α,q

(
|pα,q(t)|2

2 ρLW
+ ω2

α,q

ρLW |rα,q(t)|2

2

)
, (6.8)

in accordance with (6.7).

6.2.2. Second quantization

We obtain a quantized system by promoting the normal coordinates and their canonical
momenta to operators,

rα,q(t)→ r̂α,q(t) , pα,q(t)→ p̂α,q(t) ,

and imposing the commutators (we drop the ” ˆ ” from the operators)

[rα,q(t), rβ,q′(t)] = 0 , (6.9)

[pα,q(t), pβ,q′(t)] = 0 ,

[rα,q(t), pβ,q′(t)] = i~δα,βδq,q′ .

It is common to introduce phonon creation and annihilation operators,

b†α,q(t) : creates a phonon of mode α with wavenumber q,
bα,q(t) : annihilates a phonon of mode α with wavenumber q,

that satisfy

[bα,q(t), bβ,q′(t)] = 0 ,[
b†α,q(t), b

†
β,q′(t)

]
= 0 ,[

bα,q(t), b
†
β,q′(t)

]
= δα,βδq,q′ .

The allocations

rα,q(t) =

√
~

2 ρLW ωα,q

(
bα,q(t) + b†α,−q(t)

)
, (6.10)

pα,q(t) = i

√
~ ρLW ωα,q

2

(
b†α,q(t)− bα,−q(t)

)
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6. Electron-phonon coupling

comply with (6.9), we explicitly demonstrate the third relation:

[rα,q(t), pβ,q′(t)] =

√
~

2 ρLW ωα,q
i

√
~ ρLW ωβ,q′

2

[
bα,q(t) + b†α,−q(t), b

†
β,q′(t)− bβ,−q′(t)

]
=

i~
2

√
ωβ,q′

ωα,q

(
[bα,q(t), b

†
β,q′(t)]− [bα,q(t), bβ,−q′(t)]

+[b†α,−q(t), b
†
β,q′(t)]− [b†α,−q(t), bβ,−q′(t)]

)
=

i~
2

√
ωβ,q′

ωα,q
(δα,βδq,q′ − 0 + 0− (−δα,βδq,q′)) = i~δα,βδq,q′ . X

With rα,q → r̂α,q, r
∗
α,q → r̂†α,q and pα,q → p̂α,q, p

∗
α,q → p̂†α,q, hamiltonian (6.8) becomes a

diagonal operator in occupation number representation:

H =
∑
α,q

1

2

(
p†α,qpα,q

2 ρLW
+ ω2

α,q

ρLWr†α,qrα,q

2

)

=
∑
α,q

1

2

(
~ωα,q

2
(bα,q − b†α,−q)(b†α,q − bα,−q) +

~ωα,q
2

(b†α,q + bα,−q)(bα,q + b†α,−q)

)
(∗)
=

∑
α,q

~ωα,q
4

(
bα,qb

†
α,q − bα,qbα,−q − b†α,qb

†
α,−q + b†α,qbα,q

+b†α,qbα,q + b†α,qb
†
α,−q + bα,qbα,−q + bα,qb

†
α,q

)
=

∑
α,q

~ωα,q
2

(
bα,qb

†
α,q + b†α,qbα,q

)
=
∑
α,q

~ωα,q
2

(1 + 2n̂α,q) =
∑
α,q

~ωα,q
(
n̂α,q +

1

2

)
.

In step (∗) we have used ωα,q = ωα,−q in order to exchange terms ωα,q(. . .−b†α,−qb†α,q . . .)↔
ωα,−q(. . . − b†α,qb†α,−q) in the summation. We conclude that (6.10) is indeed the correct
quantization of the normal coordinate such that the in-plane vibrations (6.6) become
quantized in terms of this operator,

~S(x, y, t) =
∑
α,q

√
~

2 ρLW ωα,q

(
bα,q(t) + b†α,−q(t)

) (
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
eiqy . (6.11)

The operator ~S represents an observable and as such it must be hermitian. With

ωα,q = ωα,−q ,

bα,q(t) + b†α,−q(t) =
(
bα,−q(t) + b†α,q(t)

)†
,

f (α,q)
x,y (x) =

(
f (α,−q)
x,y (x)

)∗
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6.3. Deformation potential

all summands of (6.11) with q < 0 can be expressed via their −q > 0 counterpart3. In
this representation,

~S(x, y, t)=
∑
α, q
q > 0

√
~

2 ρLW ωα,q
(6.12)

×
((

bα,q(t) + b†α,−q(t)
)† (

f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
eiqy

+
(
bα,q(t) + b†α,−q(t)

)† (
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)∗
e−iqy

)
=
∑
α, q
q > 0

√
~

2 ρLW ωα,q

(
bα,q(t) + b†α,−q(t)

) (
f (α,q)
x (x)~ex + f (α,q)

y (x)~ey
)
eiqy + h.c. ,

hermiticity becomes explicit. X

6.3. Deformation potential

Acoustic phonons compress and dilate the medium through which they travel. For small
phonon amplitudes the relative compression/dilation is given by the trace of the strain
tensor, uii, (A.6). This mechanism locally changes the charge density and thus the electric
potential experienced by charge carriers. Due to its origin, this potential energy shift is
referred to as the deformation potential. Figure 6.2 sketches the microscopic mechanism.

Dilation
of chain

Monatomic
potential

Figure 6.2.: The attractive potential of the nucleus is shielded by the surrounding elec-
trons, yet a net attractive potential remains at a sufficiently large distance
(inset). A dilation of the atomic chain (atomic distance a) from its equi-
librium configuration effectively shifts this potential upwards. While atoms
appear neutral from infinity, a nearby electron does feel a finite repulsive po-
tential due to the negative charge of the atom’s electron shell. Dilation or
contraction of the atomic chain effectively changes this potential.

For a two-dimensional material, the area element dA0 is locally compressed / dilated to
dA(x, y, t) = dA0(1 + ∆(x, y, t)), where ∆(x, y, t) := uxx(x, y, t) + uyy(x, y, t) is the trace

3A mode with q = 0 does not occur as its wavelength would be infinity.
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6. Electron-phonon coupling

of the strain tensor. Out-of-plane deformations uzz(x, y, t) do not contribute in lowest
order. Consequently, the equilibrium charge density n0 = dN/dA0 is locally shifted to

n(x, y, t) =
dN

dA(x, y, t)
=

dN

dA0(1 + ∆(x, y, t))
≈ n0(1−∆(x, y, t)) .

In effect, electrons experience a potential energy shift VD(x, y, t) proportional to the charge
density shift n0 − n(x, y, t) = n0∆(x, y, t):

VD(x, y, t) ∝ n0∆(x, y, t) ∝ ∆(x, y, t) ,

⇒ VD(x, y, t) = gD∆(x, y, t) .

Literature values for the coupling constant in graphene vary from 17 eV to 29 eV and we
assume gD = 25 eV, [Chen (2008), Bolotin (2008)].

A quantum mechanical expression for the deformation potential is obtained by expressing
the strain tensor in terms of phonons. From (6.12), (A.1) and (A.5) we infer

~u(x, y, t)→ ~̂S(x, y, t) ,

⇒ uxx(x, y, t) + uyy(x, y, t)→ ∂xŜx(x, y, t) + ∂yŜy(x, y, t) ,

⇒ VD(x, y, t)→ ĤEPC := gD

(
∂xŜx(x̂, ŷ, t) + ∂yŜy(x̂, ŷ, t)

)
.

The hamiltonian HEPC is the quantum mechanical representation of the deformation
potential via which electrons feel the local deformation. That is, coordinates x, y must
be evaluated as electron coordinates, thus turning them into electron operators x̂, ŷ. The
electron-phonon coupling HEPC mediates electron energy to phonon states (relaxation via
phonon creation) and vice versa. Due to the summation over in-plane modes (α,±q) on
the right hand side, HEPC can be written as

HEPC =
∑
α, q
q > 0

H
(α,±q)
EPC , (6.13)

where

H
(α,±q)
EPC = gD

√
~

2 ρLW ωα,q

(
bα,q(t) + b†α,−q(t)

) (
∂xf

(α,q)
x (x) + iqf (α,q)

y (x)
)
eiqy + h.c.

is the coupling to modes (α,±q). Hermiticity is conserved since the derivative of the h.c.
term in (6.12) is indeed hermitian conjugate to the derivative of the explicit term in this
equation4.

4Complex conjugation and derivation commute as both operations are linear.
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7. Spin relaxation

In this chapter, spin relaxation of a single electron in a GNR quantum dot via spin-orbit
and electron-phonon coupling is discussed. First, we explain the admixture mechanism
introduced by [Khaetskii (2001)], which couples electron spin to phonons. After the ex-
plicit study of all quantities, we finally calculate the relaxation rate via Fermi’s Golden
Rule.

7.1. Admixture mechanism

The electron-phonon interaction that we obtained from the deformation potential, HEPC

(see (6.13)), does not couple to spin directly. Therefore, a spin-mixing mechanism (ad-
mixture mechanism) needs to be included to open a relaxation channel.

As a first step we consider product states |n, s,N〉 consisting of electron orbital state |n〉,
electron spin state |s〉 and phonon Fock state |N〉. Since HEPC is spin-independent spin
states can be treated separately:

〈n, ↓, Nf |HEPC |n, ↑, Ni〉 = 〈n,Nf |HEPC |n,Ni〉 〈↓ | ↑〉︸ ︷︷ ︸
=0

= 0 (Ni/f : initial/final).

That is, spin cannot relax via HEPC alone. Electron-phonon interaction couples directly
to the electron orbital but not to electron spin which is why product states |n, s,N〉 do
not allow for spin relaxation. But phonons do couple to spin indirectly via a combination
of electron-phonon and spin-orbit interaction.

Spin-orbit interaction can be treated as a perturbation of the electronic part of product
states |n, s,N〉. The perturbation HSO (3.5) turns a product state with definite spin into
a superposition of states with equal and opposite spin,

|n, ↑〉 → |n↑〉 =
∑
k

c
(k)
n↑ |k, ↑〉+ d

(k)
n↑ |k, ↓〉 , (7.1)

and accordingly for the opposite spin. The states |n↑〉, |n↓〉 represent corrected states that
originate from unperturbed product states |n, s〉. The phonon Fock state remains unaf-
fected such that we obtain electron-phonon product states of the form |ns,N〉. Instead of
coupling phonons only to electron orbital states |n〉, HEPC now couples phonons to com-
bined electronic states |ns〉. The contribution of both spins in the electronic states leads
to non-zero matrix elements 〈n ↓, Nf |HEPC |n ↑, Ni〉 (spin-flip). The resulting relaxation
channel is depicted in figure 7.1.
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(allowed
transition)

(no transition)

Figure 7.1.: Since HEPC is spin-independent it cannot couple | ↑〉 and | ↓〉 spin states
directly. The spin-orbit interaction HSO mixes spin states and consequently
opens an indirect relaxation channel.

We continue with the spin-orbit mixed states and then we evaluate the finite spin-flip
matrix elements.

7.1.1. Spin-orbit mixed states

We treat (7.1) in first order perturbation theory, |n ↑〉(1) = |n, ↑〉 + |n ↑〉(C1). The first
order correction is given by

|n↑〉(C1) =
∑

(k,s)6=(n,↑)

|k, s〉〈k, s|HSO|n, ↑〉
En,↑ − Ek,s

=
∑

(k,s)6=(n,↑)

|k, s〉〈k, s|HI |n, ↑〉+ 〈k, s|HR|n, ↑〉
En,↑ − Ek,s

=
∑
k 6=n

|k, ↑〉 〈k, ↑ |HI |n, ↑〉(
En + gµBB

2

)
−
(
Ek + gµBB

2

) +
∑
k

|k, ↓〉 〈k, ↓ |HR|n, ↑〉(
En + gµBB

2

)
−
(
Ek − gµBB

2

)
=

∑
k 6=n

|k, ↑〉 (HI)
↑↑
kn

En − Ek︸ ︷︷ ︸
= c

(k,1)
n↑

+
∑
k

|k, ↓〉 (HR)↓↑kn
En − Ek + gµBB︸ ︷︷ ︸

= d
(k,1)
n↑

=
∑
k 6=n

c
(k,1)
n↑ |k, ↑〉+

∑
k

d
(k,1)
n↑ |k, ↓〉 .

For the second equality we have decomposed HSO into a part that conserves spin (intrinsic
term HI) and a spin flipping part (Rashba term HR) and we have assumed a magnetic
field perpendicular to the graphene plane1. The coefficient of |n, ↑〉 on the right hand

side of (7.1) would be c
(n,1)
n↑ = 1 in this notation. According results hold for |n↓〉(1), with

1Otherwise real spin (sz) and Pseudo-spin (σz′) would be oriented differently (~ez ∦ ~ez′).
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7.1. Admixture mechanism

correction coefficients

c
(k,1)
n↓ =

(HI)
↓↓
kn

En − Ek
and d

(k,1)
n↓ =

(HR)↑↓kn
En − Ek − gµBB

.

We note that, due to opposite spins, the matrix elements evaluate differently from above.
Also, the Zeeman splitting has opposite sign and this is important because the system con-
serves time-reversal symmetry, which leads to Van Vleck cancellation [Van Vleck (1940)].
In the basis of these first order corrected states the spin flipping matrix elements of HEPC

are (we omit the phonon states for a short notation; here, we focus on spin-orbit mixing
of the electron state)

〈n↓ |(1)HEPC |n↑〉(1) =

(
〈n, ↓ |+

∑
k 6=n

c
(k,1)∗

n↓ 〈k, ↓ |+
∑
k

d
(k,1)∗

n↓ 〈k, ↑ |

)
HEPC

×

(
|n, ↑〉+

∑
l 6=n

c
(l,1)
n↑ |l, ↑〉+

∑
l

d
(l,1)
n↑ |l, ↓〉

)
=

∑
l

〈n|HEPC |l〉d(l,1)
n↑ +

∑
k 6= n
l

c
(k,1)∗

n↓ 〈k|HEPC |l〉d(l,1)
n↑

+
∑
k

d
(k,1)∗

n↓ 〈k|HEPC |n〉+
∑
k

l 6= n

d
(k,1)∗

n↓ 〈k|HEPC |l〉c(l,1)
n↑

≈
∑
k

(
〈n|HEPC |k〉d(k,1)

n↑ + 〈k|HEPC |n〉d(k,1)∗

n↓

)
. (7.2)

As expected, there is a finite overlap due to admixture of spins. We focus on lowest order
and hence neglect terms with two corrections in the last step.

To evaluate this result, we determine the matrix elements of HR and of HEPC with
the electrostatically confined electron states of chapter 4. As derived in this chapter,
there are arbitrarily many transverse excitations qm, (4.5), all of which contribute to
(7.2). We assume the electron in the QD, whose spin is flipped, to have minimal energy,

corresponding to the leftmost band in figure 7.2 (a). As the correction coefficients d
(k,1)
n↑ go

inversely with the energy splitting2 En−Ek, contributions of higher transverse excitations
will be much smaller, as illustrated by figure 7.2 (b). Therefore, we only take states with
small energy splitting into account, that is bound3 states of lowest transverse excitation
with qm=0.

For explicit calculations we use the states (4.11). Keeping m = 0 in mind, we free all
quantities from their transverse excitation index and label them with the summation
index of (7.2), e.g. αm=0 → α → αk. Then, the explicit form of the bound state

2For states of different transverse excitation the Zeeman term is much smaller than this splitting.
3For each transverse excitation there is a discrete spectrum of bound states and, beyond, a continuum

of unbound states with energies in the conduction band of the barrier region, figure 4.2 (b).

63



7. Spin relaxation
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Figure 7.2.: (a) There are infinitely many transverse excitations. We plot the energy
spectrum (x-coordinate) as a function of the potential difference ∆V between
barrier and gate region (y-coordinate) for q0, q1 and q2. Assuming ∆V =
1.8~vF q0, we enumerate the spectrum (equation (4.8)) from low to high energy
(1, 2, 3, ...). The q0 part is similar to figure 4.3. (b) The correction coefficients
are weighted with the inverse of the energy difference, which we plot for the
energies indicated in (a). The q0 series, denoted by numbers 2, 3, 4 and 5,
clearly dominates such that we neglect higher transverse excitations. While
in this graph the q1 weights are still distinguishable from one another, the q2
weights behave quasi-continuous, which also applies for higher series.

|k〉 = (ψ
(K)
A , ψ

(K)
B ,−ψ(K′)

A ,−ψ(K′)
B )k is written as follows:

y ≤ 0 ⇒ |k〉 = αk



z
k
(k)
B

1
0
0

 eiqx +


0
0
z
k
(k)
B

1

 e−iqx

 e−ik
(k)
B y , (7.3)

0 ≤ y ≤ L ⇒ |k〉 = βk




1
z
k
(k)
G

0
0

 eiqx +


0
0
1
z
k
(k)
G

 e−iqx

 eik
(k)
G y

+γk



z
k
(k)
G

1
0
0

 eiqx +


0
0
z
k
(k)
G

1

 e−iqx

 e−ik
(k)
G y ,

L ≤ y ⇒ |k〉 = δk




1
z
k
(k)
B

0
0

 eiqx +


0
0
1
z
k
(k)
B

 e−iqx

 eik
(k)
B (y−L) .
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7.1. Admixture mechanism

The matrix element (7.2) involves quantities d
(k,1)
n↑ and 〈n|HEPC |k〉, which are discussed

below. As we will calculate the relaxation time via Fermi’s Golden Rule, (section 7.2.1),
the squared matrix element

∣∣〈n↓ |(1)HEPC |n↑〉(1)
∣∣2 will be required.

7.1.2. Rashba matrix elements

For the correction coefficients d
(k,1)
n↑ and d

(k,1)∗

n↓ we need to calculate the matrix elements
of the Rashba hamiltonian, which we have discussed in section 3.4. In agreement with
table 3.5, explicit spin simplifies the matrix element (HR)↓↑kn to

(HR)↓↑kn = 〈k, ↓ | − λR(σxτzsy − σysx)|n, ↑〉 = −λR〈k|iσxτz − σy|n〉

= −λR
∫ W

0

∫ ∞
−∞


ψ

(K)
A

ψ
(K)
B

−ψ(K′)
A

−ψ(K′)
B


†

k


0 2i 0 0
0 0 0 0
0 0 0 0
0 0 −2i 0




ψ
(K)
A

ψ
(K)
B

−ψ(K′)
A

−ψ(K′)
B


n

dx dy

= −2iλR

∫ W

0

∫ ∞
−∞

(
ψ

(K)∗

A,k ψ
(K)
B,n − ψ

(K′)∗

B,k ψ
(K′)
A,n

)
dx dy . (7.4)

As the wavefunction is defined piecewise for the barrier and gate regions we need to split
the y-integration into according parts. For y ≤ 0 we find with (7.3)

∫ W

0

∫ 0

−∞

(
ψ

(K)∗

A,k ψ
(K)
B,n − ψ

(K′)∗

B,k ψ
(K′)
A,n

)
dx dy

=

∫ W

0

∫ 0

−∞

(
α∗kzk(k)

B
e−iqx+|k

(k)
B |yαne

iqx+|k(n)
B |y

−(−α∗k)eiqx+|k
(k)
B |y(−αn)z

k
(n)
B
e−iqx+|k

(n)
B |y
)

dx dy

= α∗kαn

∫ W

0

∫ 0

−∞
(z
k
(k)
B
− z

k
(n)
B

)e(|k
(k)
B |+|k

(n)
B |)ydx dy

=
α∗kαnW (z

k
(k)
B
− z

k
(n)
B

)

|k(k)
B |+ |k

(n)
B |

[
e(|k

(k)
B |+|k

(n)
B |)y

]0
−∞

=
α∗kαnW (z

k
(k)
B
− z

k
(n)
B

)

|k(k)
B |+ |k

(n)
B |

, (7.5)

where we have used kB = i|kB| and zkB ∈ R (see (4.10) and (4.7)). Accordingly, for the
other barrier region (L ≤ y) the result is

∫ W

0

∫ ∞
L

(
ψ

(K)∗

A,k ψ
(K)
B,n − ψ

(K′)∗

B,k ψ
(K′)
A,n

)
dx dy =

δ∗kδnW (z
k
(n)
B
− z

k
(k)
B

)

|k(k)
B |+ |k

(n)
B |

. (7.6)
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7. Spin relaxation

In the gated region (0 ≤ y ≤ L) we have to distinguish k 6= n and k = n. We treat the
former case first, for simplicity only one summand at a time:∫ W

0

∫ L

0

ψ
(K)∗

A,k ψ
(K)
B,ndx dy

=

∫ W

0

∫ L

0

(
β∗ke

−i(qx+k(k)
G y) + γ∗kz

∗
k
(k)
G

e−i(qx−k
(k)
G y)
)(
βnzk(n)

G
ei(qx+k

(n)
G y) + γne

i(qx−k(n)
G y)

)
dx dy

=

∫ W

0

∫ L

0

(
β∗kβnzk(n)

G
e−i(k

(k)
G −k

(n)
G )y + β∗kγne

−i(k(k)
G +k

(n)
G )y

+γ∗kz
∗
k
(k)
G

βnzk(n)
G
ei(k

(k)
G +k

(n)
G )y + γ∗kz

∗
k
(k)
G

γne
i(k

(k)
G −k

(n)
G )y

)
dx dy

= β∗kβnzk(n)
G
W
e−i(k

(k)
G −k

(n)
G )L − 1

−i(k(k)
G − k

(n)
G )

+ β∗kγnW
e−i(k

(k)
G +k

(n)
G )L − 1

−i(k(k)
G + k

(n)
G )

+γ∗kz
∗
k
(k)
G

βnzk(n)
G
W
ei(k

(k)
G +k

(n)
G )L − 1

i(k
(k)
G + k

(n)
G )

+ γ∗kz
∗
k
(k)
G

γnW
ei(k

(k)
G −k

(n)
G )L − 1

i(k
(k)
G − k

(n)
G )

. (7.7)

The other summand is

−
∫ W

0

∫ L

0

ψ
(K′)∗

B,k ψ
(K′)
A,n dx dy

= −β∗kz∗k(k)
G

βnW
e−i(k

(k)
G −k

(n)
G )L − 1

−i(k(k)
G − k

(n)
G )

− β∗kz∗k(k)
G

γnzk(n)
G
W
e−i(k

(k)
G +k

(n)
G )L − 1

−i(k(k)
G + k

(n)
G )

−γ∗kβnW
ei(k

(k)
G +k

(n)
G )L − 1

i(k
(k)
G + k

(n)
G )

− γ∗kγnzk(n)
G
W
ei(k

(k)
G −k

(n)
G )L − 1

i(k
(k)
G − k

(n)
G )

.

and they add up to∫ W

0

∫ L

0

(
ψ

(K)∗

A,k ψ
(K)
B,n − ψ

(K′)∗

B,k ψ
(K′)
A,n

)
dx dy

=
z∗
k
(k)
G

− z
k
(n)
G

i(k
(k)
G − k

(n)
G )

W
(
β∗kβn

(
e−i(k

(k)
G −k

(n)
G )L − 1

)
+ γ∗kγn

(
ei(k

(k)
G −k

(n)
G )L − 1

))
+
z∗
k
(k)
G

z
k
(n)
G
− 1

i(k
(k)
G + k

(n)
G )

W
(
γ∗kβn

(
ei(k

(k)
G +k

(n)
G )L − 1

)
+ β∗kγn

(
e−i(k

(k)
G +k

(n)
G )L − 1

))
.(7.8)

If k = n, we follow the first steps of (7.7) but make use k
(k)
G = k

(n)
G , leading to∫ W

0

∫ L

0

(
ψ

(K)∗

A,n ψ
(K)
B,n − ψ

(K′)∗

B,n ψ
(K′)∗

A,n

)
dx dy

=

∫ W

0

∫ L

0

(
β∗nβnzk(n)

G
+ β∗nγne

−2ik
(n)
G y + γ∗nβnz

∗
k
(n)
G

z
k
(n)
G
e2ik

(n)
G y + γ∗nγnz

∗
k
(n)
G

)
dx dy

−
∫ W

0

∫ L

0

(
β∗nβnz

∗
k
(n)
G

+ β∗nγnz
∗
k
(n)
G

z
k
(n)
G
e−2ik

(n)
G y + γ∗nβne

2ik
(n)
G y + γ∗nγnzk(n)

G

)
dx dy

(∗)
=

∫ W

0

∫ L

0

(
β∗nβn(z

k
(n)
G
− z∗

k
(n)
G

) + γ∗nγn(z∗
k
(n)
G

− z
k
(n)
G

)
)

dx dy

= (z
k
(n)
G
− z∗

k
(n)
G

)(β∗nβn − γ∗nγn)LW ∝ |βn|2 − |γn|2 = 0 ,
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7.1. Admixture mechanism

where we have used |z
k
(n)
G
| = 1 in step (∗). Symmetry dictates |βn|2 = |γn|2 such that

the integral becomes zero. For k = n, this is also holds for the sum of (7.5) and (7.6), as
|αn|2 = |δn|2. That is, (HR)↓↑nn = 0. For k 6= n, the integral in (7.4) is given by the sum of
terms (7.5), (7.6) and (7.8). All integrals are confirmed numerically and it turns out that
the sum is zero not only for k− n = 0 but more generally4 for k− n = 0, ±2, ±4, ... and
finite otherwise.

For opposite spins, we find accordingly (see table 3.5)

(HR)↑↓kn = 2iλR

∫ W

0

∫ ∞
−∞

(
ψ

(K)∗

B,k ψ
(K)
A,n − ψ

(K′)∗

A,k ψ
(K′)
B,n

)
dx dy .

From (7.3) we see that the integral in the barrier region y ≤ 0 can be inferred from the
above result with the replacements αk → αkzk(k)

B
and αkzk(k)

B
→ αk:

(7.5) ⇒
α∗kαnW (z∗

k
(k)
B

− z
k
(n)
B

)

|k(k)
B |+ |k

(n)
B |

→
α∗kαnW (z

k
(n)
B
− z∗

k
(k)
B

)

|k(k)
B |+ |k

(n)
B |

=

∫ W

0

∫ 0

−∞

(
ψ

(K)∗

B,k ψ
(K)
A,n − ψ

(K′)∗

A,k ψ
(K′)
B,n

)
dx dy .

The integrals in for 0 ≤ y ≤ L and L ≤ y are obtained with analog replacements for βk,
γk and δk. All integrals are the negative of those above such that, with the prefactor 2iλR
instead of −2iλR the matrix elements are the same5 (HR)↑↓kn = (HR)↓↑kn.

The correction coefficients d
(k,1)
n↑ and d

(k,1)
n↓ are obtained from these matrix elements via

division by En − Ek ± gµBB. We point out that the energy splitting is dominated by
En − Ek (for k 6= n) such that the coefficients with k = n would contribute the domi-
nant corrections. However, the numerator of these terms is zero such that only smaller
corrections contribute.

7.1.3. Electron-phonon matrix elements

The admixture mechanism allows an electron to dissipate its Zeeman energy into the lat-
tice via phonon emission. For sufficiently low temperature we can assume initial phononic
vacuum, |Ni〉 = |0〉, and a single phonon with the Zeeman energy in the final state,
|Nf〉 = |1α,±qzα〉. The phonon can travel in both ribbon directions and the contribu-
tions to the relaxation rate are the same. That is we can focus on one direction and
then multiply the obtained rate by two. As previously, the indices α,q label dispersion
branch and wavenumber, respectively. On branch α, wavenumbers ±qzα satisfy the Zee-
man condition, ~ωα,qzα = gµBB, figure 7.3. With these phonon states the matrix element

4We enumerate the states in order of increasing energy.
5With the explicit form of the indexed quantities (αk etc.) this result can be confirmed by complex

conjugation and interchange of indices, k ↔ n.

67



7. Spin relaxation

〈n↓(1), Nf |HEPC |n↑(1), Ni〉 in (7.2) becomes

〈n↓(1), 1α,±qzα |HEPC |n↑(1), 0〉≈
∑
k

〈n, 1α,±qzα |HEPC |k, 0〉d(k,1)
n↑ +〈k, 1α,±qzα |HEPC |n, 0〉d(k,1)∗

n↓ .

(7.9)

Figure 7.3.: We plot once more the dispersion of in-plane phonons (see also figure 5.7
(c); here, we plot polynomial fits to those data points). Wavenumbers that
satisfy the Zeeman condition, ~ωα,qzα = gµBB, are indicated with circles. For
convenient magnetic fields only the branches α = 1, 2 are available. It turns
out that the contribution to the deformation potential from α = 1 cancels
out over the ribbon width such that only the modes (2,±qz2) are relevant for
spin flip.

The electron-phonon coupling HEPC has been discussed in section 6.3 and from the sum
in (6.13) it follows that only the term q = qzα contributes. Due to symmetry, both final
states |1α,±qzα〉 are equivalent but for convenience6 we treat |1α,−qzα〉. Then, the left hand

side of (7.9) becomes 〈n ↓(1), 1α,−qzα |H
(α,qzα)
EPC |n ↑(1), 0〉 and the typical matrix element on

the right hand side is

〈n, 1α,−qzα |H
(α,qzα)
EPC |k, 0〉

(6.13)
= Cα,qzα

(
〈n|g(α,qzα)†(x, y)|k〉〈1α,−qzα |bα,qzα(t) + b†α,−qzα(t)|0〉

+〈n|g(α,qzα)∗†(x, y)|k〉〈1α,−qzα |bα,−qzα(t) + b†α,qzα(t)|0〉
)

= Cα,qzα〈n|g(α,qzα)(x, y)|k〉 ,

6The electron-phonon coupling (6.13) contains creation and annihilation operators. Here, we treat
phonon emission, that is creation. We find it convenient to deal with the explicit part of (6.13), which
creates a phonon with negative wavenumber (−qzα).
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7.1. Admixture mechanism

where we have used the short hand notation

Cα,qzα〈n|g(α,qzα)(x, y)|k〉 = gD

√
~

2 ρLWωα,qzα︸ ︷︷ ︸
=:Cα,qzα

〈n| (∂xf (α,qzα)
x (x) + iqzαf

(α,qzα)
y (x))eiqzαy︸ ︷︷ ︸

=: g(α,qzα)(x,y)

|k〉

= Cα,qzα

∫ W

0

∫ ∞
−∞

ψ†n(x, y)g(α,qzα)(x, y)ψk(x, y) dx dy .

Again, we carry out the integration separately for barrier and gated regions. For y ≤ 0
we find∫ W

0

∫ 0

−∞
ψ†ng

(α,qzα)ψk dx dy

=

∫ W

0

∫ 0

−∞
g(α,qzα)

(
ψ

(K)∗

A,n ψ
(K)
A,k + ψ

(K)∗

B,n ψ
(K)
B,k + ψ

(K′)∗

A,n ψ
(K′)
A,k + ψ

(K′)∗

B,n ψ
(K′)
B,k

)
dx dy

(7.3)
=

∫ W

0

∫ 0

−∞
g(α,qzα)(x, y)α∗nαk

(
z∗
k
(n)
B

z
k
(k)
B

+ 1 + z∗
k
(n)
B

z
k
(k)
B

+ 1
)

×ei(qe−qe)xe(|k
(n)
B |+|k

(k)
B |)y dx dy

= 2α∗nαk(1 + z
k
(n)
B
z
k
(k)
B

)

∫ W

0

(∂xf
(α,qzα)
x (x) + iqzαf

(α,qzα)
y (x)) dx

×
∫ 0

−∞
eiqzαy+(|k(n)

B |+|k
(k)
B |)y dy︸ ︷︷ ︸

=1/(|k(n)
B |+|k

(k)
B |+iqzα)

=
2α∗nαk(1 + z

k
(n)
B
z
k
(k)
B

)

|k(n)
B |+ |k

(k)
B |+ iqzα︸ ︷︷ ︸

=:M
(α,qzα)
y1

∫ W

0

(∂xf
(α,qzα)
x (x) + iqzαf

(α,qzα)
y (x)) dx︸ ︷︷ ︸

=:M
(α,qzα)
x

, (7.10)

where we denote the electron’s transverse wavenumber as qe in order to disambiguate it
from the longitudinal phonon wavenumber qzα. However, it cancels out since ψ∗n and ψk
are of the same (lowest) transverse excitation. With the explicit form of functions fx,y,
(5.16), we perform the x-integration:

∂xfx(x) + iqfy(x) =

(
λ1 −

q2

λ1

)
c1e

λ1x +

(
λ2 −

q2

λ2

)
c2e

λ2x

+ (λ3 − λ3) c3e
λ3x + (λ4 − λ4) c4e

λ4x︸ ︷︷ ︸
=0

,

⇒
∫ W

0

(∂xfx(x) + iqfy(x)) dx =

∫ W

0
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λ1 −

q2

λ1

)
c1e

λ1x +

(
λ2 −

q2

λ2

)
c2e
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=
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⇒ M (α,qzα)
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1− q2

zα

λ
(α,qzα)2

1

)(
c
(α,qzα)
1

(
eλ

(α,qzα)
1 W − 1

)
+ c

(α,qzα)
2

(
e−λ

(α,qzα)
1 W − 1

))
.

(7.11)

69



7. Spin relaxation

In step (∗), we have used λ1 = −λ2. Noticeably, terms from c3e
λ3x and c4e

λ4x vanish.
While these expressions do deform the ribbon as well, they only change the local shape
but do not affect the local surface area because dilation in one direction is compensated
by compression in the other direction. Consequently, there is no contribution to the
deformation potential.

The total integral for the barrier region y ≤ 0 is given by (7.10) with the above result,
which also holds for the other regions (0 ≤ y ≤ L and L ≤ y) as the according expressions
factorize similarly into x- and y-integrations. For the other barrier region (L ≤ y) we find∫ W

0

∫ ∞
L

ψ†ng
(α,qzα)ψk dx dy

= 2δ∗nδk(1 + z
k
(n)
B
z
k
(k)
B

)

∫ W

0

(∂xf
(α,qzα)
x (x) + iqzαf

(α,qzα)
y (x)) dx

×
∫ ∞
L

eiqzαye−(|k(n)
B |+|k

(k)
B |)(y−L) dy︸ ︷︷ ︸

=−eiqzαL/(iqzα−|k(n)
B |−|k

(k)
B |)

=
2δ∗nδk(1 + z

k
(n)
B
z
k
(k)
B

)e−iqzαL

|k(n)
B |+ |k

(k)
B | − iqzα︸ ︷︷ ︸

=:M
(α,qzα)
y3

∫ W

0

(∂xf
(α,qzα)
x (x) + iqzαf

(α,qzα)
y (x)) dx (7.12)

and for the gated region (0 ≤ y ≤ L) we have to integrate∫ W

0

∫ L

0

ψ†ng
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=
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(k)
G +qzα)y + 2β∗nγk(z

∗
k
(n)
G

+ z
k
(k)
G

)ei(−k
(n)
G −k

(k)
G +qzα)y

+2γ∗nβk(z
∗
k
(n)
G

+ z
k
(k)
G

)ei(k
(n)
G +k

(k)
G +qzα)y + 2γ∗nγk(1 + z∗

k
(n)
G

z
k
(k)
G

)ei(k
(n)
G −k

(k)
G +qzα)y

)
dy .

×
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The y-integral of this expression is
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7.1. Admixture mechanism

and the x-integration as above. With (7.10), (7.11), (7.12) and (7.13) we put the matrix
element on the right hand side of (7.9) together:

〈n, 1α,−qzα |H
(α,qzα)
EPC |k, 0〉 = Cα,qzαM

(α,qzα)
x

(
M

(α,qzα)
y1 +M

(α,qzα)
y2 +M

(α,qzα)
y3

)
. (7.14)

The other term, 〈k, 1α,−qzα |HEPC |n, 0〉, is not the complex conjugate of this result7, but
can be calculated the same way. For the final state |1α,+qzα〉 amplitudes are the same but
there is a phase shift due to e±iqzαy.

While the dimensionless quantities d
(k,1)
n↑ are independent of the ribbon width, this does

not apply for 〈n|HEPC |k〉. To assign the Zeeman energy gµBB a wavenumber qzα and a
frequency ωα,qzα , the ribbon width W needs to be fixed. We choose W = 30 nm. For a
magnetic field of B = 1T , we resolve from (5.22)

ωα,qzα = 18× 1010 1

s
= 2π × 28.6 GHz

⇒ ω̃α,qzα = 0.18 .

Only the two lowest in-plane phonon branches have modes for this parameter, figure 7.3.
The deformation potential for the α = 1 branch is antisymmetric with respect to the
ribbon axis such that the integration in (7.11) yields zero, M

(1,qz1)
x = 0. Consequently

only the other branch, α = 2, can induce spin-flips via the admixture mechanism. On
this branch, the wavenumber goes linearly with frequency, q ∝ ω, for magnetic fields up
to more than 10 T.

7.1.4. Squared spin-flip matrix element

Now, we have all the terms that constitute the matrix element (7.2). We explicitly put
in all analytical and numerical quantities to calculate

∣∣〈n↓(1), 1α,−qzα |HEPC |n↑(1), 0〉
∣∣2 =

(
gDλR

~vFπ/3

)2 ~
2 ρLWωα,qzα

|H̃nn,(α,q̃zα)
↓↑,EPC |2 , (7.15)

where |H̃nn,(α,q̃zα)
↓↑,EPC |2 is the dimensionless analogon of the left hand side and determined nu-

merically. For n = 1 (QD ground state), α = 2 (only contributing branch for conventional
magnetic fields), W = 30 nm and B = 1 T, we find

|H̃11,(2,q̃z2)
↓↑,EPC |

2 = 1.38× 10−6 .

We have calculated this quantity for 23 values between ω̃2,qz2 = 0.024 (B = 0.13 T) and
0.2 (1.1 T). An axb fit to these data points reveals a proportionality ∝ B6, figure 7.4,

|H̃11,(2,q̃z2)
↓↑,EPC (ω̃)|2 ∝ ω̃6 ∝ B6 (ω̃ ∈ [0.024, 0.2]) , (7.16)

⇒ |H̃11,(2,q̃z2)
↓↑,EPC (ω̃)|2 = 1.22× 10−6 × (B[ T])6 (W = 30 nm, B ∈ [0.13 T, 1.1 T]) .

7The phonon state must be respected, too:
(
〈n, 1α,−qzα |H

(α,qzα)
EPC |k, 0〉

)∗
= 〈k, 1α,+qzα |HEPC |n, 0〉.
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7. Spin relaxation

Figure 7.4.: This log-log plot illustrates agreement of the ω̃6 fit with data points. For
ω̃ < 0.024 our numerical output is zero, thus prohibiting further numerical
analysis. For ω̃ � 0.2 the behavior differs from ω̃6.

Another B-dependence arises from8 the prefactor ω̃−1 such that the overall magnetic field
dependence of (7.15) is B5. However, we emphasize that this result is a numerical fit in
said interval and not analytic. In particular, the behavior changes for ω̃ � 0.2. Numerical
problems prohibit further analysis for ω̃ < 0.024.

7.2. Relaxation time

In this chapter, we calculate the spin relaxation time T1. As explained in section 1.1, this
is the typical time scale for the relaxation between the Zeeman-split states | ↑〉 and | ↓〉.
The inverse of this time is the relaxation rate Γ1 = 1/T1, where

Γ1 :=
dp|↑〉→|↓〉

dt

is the probability per time. First, we show that it is justified to obtain Γ1 via Fermi’s
Golden Rule. Then, we explicitly calculate this rate for our system and finally, we discuss
the results.

8The normalization N (2,qz2) has no B-dependence for ω̃ ∈ [0.024, 0.2], where it is constant, (6.4).
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7.2. Relaxation time

7.2.1. Fermi’s Golden Rule

A common measure for the stability of a quantum state is its transition rate to other
quantum states. The transition rate from the initial state |i〉 to a final state |f〉 is
the probability per time, Γ := dp|i〉→|f〉/dt. Under certain conditions this rate can be
calculated via Fermi’s Golden Rule,

Γ =
2π

~
|〈f |H ′|i〉|2ρ(Ei) , (7.17)

where ρ(Ei) is the density of states at E = Ei and H ′ is a perturbation to energy eigen-
states |i〉, |f〉. In the Dirac representation of quantum mechanics the time evolution of
states is determined by the perturbation H ′. Projecting the time-evolved initial state
|i(t)〉 onto |f〉 leads to (7.17). A full derivation of Fermi’s Golden Rule can be found in
e.g. [Burkard (QII), Nolting 5/2]. The rule is justified under the following conditions:

• After switching it on, the perturbation H ′(t) must be constant: H ′(t) = θ(t)H ′.

• The spectrum of final states must satisfy the continuum approximation,

∆Ef >
2π~
t
� δEf ,

where ∆Ef = |Ei −Ef | is the energy difference between initial and final state, δEf
is the energy spacing of final states and t is the elapsed time since switching on the
perturbation. For sufficiently long times the middle term becomes basically zero
such that the left inequality even allows for transitions between degenerate states
(∆Ef = 0). The right inequality demands a (quasi-) continuous spectrum of final
states. A finite δEf , which is always the case in finite systems, gives an upper bound
for t and therefore for the timescale on which the theory is valid.

We want to apply Fermi’s Golden Rule to spin relaxation | ↑〉 → |↓〉. For admixture
mechanism assisted relaxation of the Zeeman energy into the lattice, we consider first order
spin-orbit admixed electron states and phonon states. Then, the perturbation corresponds
to electron-phonon coupling and the density of states refers to phonon states,

|i〉 → |n↑(1), Ni〉 , |f〉 → |n↓(1), Nf〉 , H ′(t)→ HEPC(t) , ρ(E)→ D(ω)

~
.

We check the above conditions:

• The perturbation HEPC(t) contains operators b
(†)
α,±q(t) ∝ e±iωα,qt. Single phonon

processes, which we deal with here, involve only one such operator. Its phase and
therefore its time dependence can be omitted, since only the amplitude of the matrix
element in (7.17) matters. X

• Since the spin-orbit mixed electron states are discrete the phonon states must be
continuous. The assumption of a finite ribbon length and periodic boundaries leads
to discrete phonon wavenumbers thus allowing for correct counting of the phonon
modes. Discrete wavenumbers lead to a discrete phonon spectrum. However, the
rate Γ is independent of the ribbon length L, such that it is the same for any value
of L, (7.19). In a gedankenexperiment, we can assume L→∞, corresponding to a
continuous phonon spectrum. X
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7. Spin relaxation

With these conditions satisfied, we can use (7.17) to calculate the relaxation rate. All
phonon modes at the Zeeman energy represent parallel channels via which the spin can
relax, figure 7.3, and these rates add up,

Γ1 =
∑
α,±qzα

2π

~
∣∣〈n↓(1), 1α,±qzα |HEPC |n↑(1), 0〉

∣∣2 D(ωα,qzα)

~

=
∑
α,qzα

4π

~
∣∣〈n↓(1), 1α,−qzα |HEPC |n↑(1), 0〉

∣∣2 D(ωα,qzα)

~
, (7.18)

where we assume initial phonon vacuum (|Ni〉 = |0〉). As above, ±qzα are those wavenum-
bers, where branch α satisfies ~ωα,qzα = gµBB. Due to symmetry, this condition is always
satisfied for both signs and the contributions of ±qzα are identical9.

7.2.2. Relaxation time and magnetic field dependence

The relaxation time is given by the inverse of (7.18). The remaining task is merely to
evaluate this expression. As argued above, only the dispersion branches α = 1, 2 are
available for conventional Zeeman splittings and the α = 1 branch cannot induce spin
flips since the deformation potential cancels out over the ribbon width. Due to monotony,
qzα is unique for α = 2 (figure 7.3), such that (7.18) simplifies to

Γ1 =
4π

~2

∣∣〈n↓(1), 12,−qz2|HEPC |n↑(1), 0〉
∣∣2D(ω2,qz2)

=
4π

~2

(
gDλR

~vFπ/3

)2 ~
2 ρLWω2,qz2

|H̃nn,(2,−q̃z2)
↓↑,EPC |2

√
ρ

Eh

L

π

dω̃

dq̃

∣∣∣∣
ω̃2,q̃z2

=
18

gµBBW

(
gDλR
~vFπ

)2

|H̃nn,(2,−q̃z2)
↓↑,EPC |2 1√

ρEh

dω̃

dq̃

∣∣∣∣
ω̃2,q̃z2

. (7.19)

In the second step, we have substituted (5.23) and (7.15). Indeed, the ribbon length
cancels out, as required for a continuous spectrum of final states. This expression contains
three quantities that have been determined numerically:

1. The density of states dω̃/dq̃|ω̃. It is constant, dω̃/dq̃ = 1, in the interval ω̃ ∈ [0, 2],
see figure 7.3 and equation (5.23). (Figure 5.7 shows the total density of states but
here, we mean only the phonon branch α = 2.)

2. The squared matrix element |H̃nn,(2,−q̃z2)
↓↑,EPC |2, for which we find a ∝ ω̃6-dependence for

ω̃ ∈ [0.024, 0.2], see (7.16). For ω̃ > 0.2, the behavior is below ω̃6, which we use as
an upper bound.

3. The numerical normalization N (2,−qz2) is absorbed in the phonons and hence in the
matrix element. For ω̃ ∈ [0, 0.2], it is constant, (6.4) and figure 6.1. Up to ω̃ = 2
there is only a deviation from this constant of 30%.

9As explained below (7.14) the matrix elements differ by a phase but have the same amplitude.
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7.2. Relaxation time

Despite the second constraint, we extrapolate the results to ω̃ ∈ [0; 0.2]. For ω̃ ∈ [0.2; 2],
the non-constant behavior of the normalization is overcompensated by the ω̃6-dependence
of the squared matrix element such that we give an upper (lower) bound for the relaxation
rate (time) in this interval. After putting in all the constants (gD = 25 eV and10 λR =
20µeV), we find

Γ1 =
230 (B[ T])5

W [ nm]
s−1

T1 = Γ−1
1 =

W [ nm]

230 (B[ T])5 s ,

where W and B must satisfy W [ nm] × B[ T] ∈ [0; 340] in order to conform ω̃ ∈ [0; 2].
In table 7.1, we list the relaxation rate Γ1(W,B) and time T1(W,B) for several valid
combinations of these parameters. Plots for W = 30 nm, B = 1 T and for W = 100 nm,
B = 0.2 T are shown in figure 7.5.

W [ nm] B[ T] Γ1[ s−1] T1[ s]
10 0.5 720× 10−3 1.4
10 1 23 43× 10−3

10 3 5.6× 103 180× 10−6

10 10 < 2.3× 106 > 430× 10−9

30 0.2 2.5× 10−3 410
30 0.5 240× 10−3 4.2
30 1 7.7 130× 10−3

30 10 < 770× 103 > 1.3× 10−6

100 0.1 23× 10−6 43× 103

100 0.3 5.6× 10−3 180
100 1 < 2.3 > 430× 10−3

100 3 < 560 > 1.8× 10−3

200 0.2 < 370× 10−6 > 2.7× 103

200 0.5 < 36× 10−3 > 28
200 1 < 1.15 > 870× 10−3

200 1.5 < 8.7 > 110× 10−3

Table 7.1.: Relaxation rates and times for different parameters W , B. Upper (lower)
bounds for the relaxation rate (time) are indicated with ”<” (”>”). Due to
the B5-dependence the relaxation rate is tunable over about ten magnitudes
for a fixed width. The width, that is, the design of the device, also affects the
relaxation.

10The Rashba coupling is proportional to the electric field, λR = 5µeV×E[ V/nm], and a typical value
for the electric field induced by a substrate is 1 V/nm, [Gmitra (2009)]. Since an additional gate
voltage might be applied, we assume E = 4 V/nm.
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7. Spin relaxation

(a)

(b)

Figure 7.5.: Plot of the relaxation time (logarithmic axis) for two ribbon widths: W =
30 nm (a) and W = 100 nm (b). Our numerical results correspond to the
purple section, which we extrapolated to smaller values (solid orange section).
The dashed orange section is a lower bound for the relaxation time for higher
magnetic fields. Due to other physical effects, we expect our theory to be
invalid beyond 105 s.
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8. Conclusion and Outlook

In this final chapter, we summarize the above work and point out the most important
results, which encourage a further study of this system.

8.1. Conclusion

Among other requirements, a quantum computer requires long coherence times. A spin-
tronics implementation appears promising because of the convenience and versatility of
solid state physics, proven in classical electronics, and the prospect of long coherence
times. Spin qubits in graphene QD are a specific spintronics implementation with addi-
tional benefits in qubit coherence and coupling of distant qubits. In carbon, nuclear spin
effects are weaker than in conventional semiconducting materials (e.g. GaAs) such that
spin-relaxation via spin-phonon coupling is important.

In chapter 2, the electronic properties of graphene have been reviewed. In particular the
quasi-relativistic electronic behavior, pseudo-spin, which refers to the two atoms per unit
cell and the Klein paradox. The spin-orbit hamiltonian has been derived from the orbital
configuration1, whereby it has become clear that the form of the hamiltonian depends on
the lattice orientation, similarly to the tight-binding hamiltonian. All calculations have
been done with the orientation as depicted in figure 2.1 which has led to a consistent
form of tight-binding and spin-orbit hamiltonians ((2.8) and (3.5)). As a byproduct of
these calculations, we have obtained the energy level diagram of the n = 2 atomic shell
of carbon, which in graphene forms an sp2 hybrid and decoupled pz states. Degenerate
bonding and antibonding pz states explain the vanishing gap at the Fermi energy for bulk
graphene, figure 3.2. For a quasi-one-dimensional graphene ribbon with armchair edges,
the electron wavefunction must vanish at the edges on both lattice sites and this leads,
depending on the number of atoms along the width, to gapped and ungapped graphene.
While ungapped graphene makes it hard to confine electrons due to the Klein paradox,
gapped graphene like an armchair GNR allow for confinement and hence for electrostatic
QD. The energy spectrum of such electrostatically confined electrons has been derived.
There are infinitely many transverse (that is with respect to the ribbon width) excitations,
each of which supports a finite series of longitudinal excitations, depending on confinement
parameters. However, the energy increases rapidly for higher transverse excitations such
that usually only the lowest series will be relevant.

By means of the continuum model we have derived for the first time the dispersion and

1We have not included the d-orbitals, however. As a consequence, we have not derived the coupling
constants but use those of Gmitra et. al, who respect the d-orbitals, [Gmitra (2009)].
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explicit form of in-plane and out-of-plane acoustic phonons at the zone center, where
atomic distances are negligible with respect to the wavelength. With periodic boundaries
in the longitudinal direction, the obtained PDE that describe the motion simplify to
ODE in the transverse direction. Free boundaries in the transverse direction correspond
to minimal free energy for the out-of-plane modes and a vanishing of certain components of
the stress tensor for in-plane modes. In agreement with classical experience, we have found
infinitely many transverse excitations for the out-of-plane. In contrast to bulk, where the
dispersion at the zone center is quadratic, the lowest mode features a linear behavior
that is due to the boundary conditions. This leads to finite density of states for zero
energy. For large wavenumbers all modes behave like in bulk. This has been expected as
the finite ribbon width appears like bulk for sufficiently small wavelengths. The in-plane
modes form vector fields as the boundary conditions mix longitudinal and transversal
modes. Still, we have managed to identify modes with dominant longitudinal/transverse
character and derived the longitudinal and transverse sound velocity associated with these
modes. These values depend on elastic constants that have not been settled, yet. For
reasonable choices of these constants, the sound velocities compare well with literature
values for bulk graphene and carbon nanotubes (table 5.2). There are two modes that
originate from zero energy: a flat one and a linear one. Due to the flat mode the density
of states diverges for zero energy. Again, all modes behave like bulk (i.e. linear) for
sufficiently large wavenumbers.

These classical modes have been quantized by virtue of the right orthonormality relations.
While orthogonality is an inherent property of the PDE, normalization has been achieved
numerically. We have derived the normal coordinates and the associated Lagrangian,
hamiltonian and canonical momentum and have quantized coordinate and momentum
in terms of phonon creation and annihilation operators. While this procedure works for
in-plane as well as for out-of-plane modes, we have restricted it to the in-plane modes,
here, since the deformation potential has no lowest-order contributions from out-of-plane
modes. The deformation potential is one of several electron-phonon coupling mechanisms
and the underlying effect is that a phonon causes a dilation or compression of the material.
This changes the local charge density and therefore the coulomb potential that influences
electrons. We have expressed this coupling mechanism as an operator in terms of ribbon
phonon creators and annihilators and we have confirmed its hermiticity.

The deformation potential does not couple to electron spin directly. A combination of
electron-phonon coupling and spin-orbit coupling, however, allows for an effective spin-
phonon coupling mechanism via which the Zeeman energy can be released. In the ad-
mixture mechanism proposed by Khaetskii and Nazarov, spin-orbit coupling perturbs the
electronic states such that the orbital states mix. Coupling to these mixed orbital states,
the deformation potential can cause a spin flip, figure 7.1. The mixing of the orbital
states, which correspond to the energy levels in the QD that had been discussed before-
hand, and the coupling of the deformation potential have been treated analytically and
in detail. Although there is also an effect from intrinsic spin-orbit coupling to the mix-
ing of electronic states it only occurs in higher order. For a preliminary result we have
focused on lowest order effects, that is, Rashba-type spin-orbit coupling and the series of
lowest transverse excitation, figure 7.2. It has turned out that, in this series, only every
second second longitudinal excitation contributes to the mixing of the state, which we
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have calculated in first order perturbation theory. In particular, the state with opposite
spin and same longitudinal excitation (i.e. the same orbital state) does not contribute.
Since all non-zero contribution are weighted with the inverse of the energy difference this
strongly suppresses the admixing. An even further suppression arises from the Van Vleck
cancellation, which we have expected since the electronic states conserve time-reversal
symmetry2 [Van Vleck (1940)]. In addition, we have assumed phononic vacuum and the
creation of only one phonon that absorbs the Zeeman energy. For conventional magnetic
fields (≈ 1 T) only modes on the two lowest branches of the in-plane dispersion are avail-
able. For modes on the flat branch, however, the local deformation potential cancels out
over the ribbon width such that only modes on the linear branch contribute to relaxation
via this mechanism. Due to the linearity of this branch, the density of states is small
compared to the flat branch, which further suppresses spin relaxation.

In order to calculate the relaxation rate via Fermi’s Golden Rule we had to ensure a
continuous spectrum of final states. Since the ribbon length cancels out, the rate is
the same for a ribbon of arbitrary length. In particular, a sufficiently long ribbon can be
assumed such that the continuum approximation is satisfied. The resulting relaxation rate
goes inversely with the ribbon width and thus, in principle, allows for tailor-made devices.
Magnetic fields can be adjusted well over a range of two magnitudes such that the B5-
dependence of the rate leads to relaxation times that differ by about ten magnitudes. The
behavior with B5 applies for a certain parameter interval, where relaxation times range
from 180µs to 43 × 103s, table 7.1. For parameters beyond our numerically available
regime, we have given a lower bound for the relaxation time.

In total, the entire theory for spin relaxation in GNR has been introduced and demon-
strated for one relaxation mechanism in lowest order. In this case, spin relaxation is
efficiently suppressed by several effects:

• Only every second longitudinal excitation contributes to spin-orbit admixing.

• The electronic states conserve time-reversal symmetry, leading to Van Vleck cancel-
lation.

• We have assumed phononic vacuum. This is justified for sufficiently low tempera-
tures.

• For conventional magnetic fields only one dispersion branch contributes to the de-
formation potential and this branch has a low density of states.

All values are satisfactory for the third DiVincenzo criterion and this motivates a more
detailed investigation of this system [DiVincenzo (1999), Loss (1998)]. With the basics
understood in detail, we expect further studies to proceed conveniently.

2This symmetry is related to the degeneracy of the Dirac points K and K ′, which is indeed unbroken
in this system.
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8.2. Outlook

The simplifying assumptions in this work have led to results that encourage a more realistic
model. As for the ribbon phonons, we have assumed free boundaries, that is, freestanding
graphene. In reality, true freestanding graphene cannot exist because of divergent long-
range interactions in two-dimensional lattices, thus implying the necessity of a substrate
or fixed boundaries (see comment in section 1.3). This affects electron-phonon coupling
and the density of states, and consequently the relaxation rate. Moreover, the assumption
of phononic vacuum can be generalized to non-zero phonon occupation numbers via Bose
statistics with a finite temperature: Nω = 1/(e~ω/kBT − 1). We have focused on single
phonon processes but in higher order there are also multiple phonon processes and the
out-of-plane modes contribute to the deformation potential.

The dominant contributions to the admixing of electronic states come from the series of
lowest transverse excitation and we have neglected all higher series. While we do not
expect these contributions to change the rate by magnitudes they should be included in
a more general calculation. This also applies for unbound electronic states, which travel
freely across the ribbon. It might turn out, however, that there is no net effect from these
states for symmetry reasons. Intrinsic spin-orbit coupling does increase the admixture of
states as a higher order effect.

Here, we have focused on the deformation potential but spin can relax via various mech-
anisms and this might change the rate significantly. Predictions for circular QD in bulk
graphene indicate strong contributions from bond length change and direct spin-phonon
deflection coupling to out-of-plane modes, [Struck (2010)]. All these effects add up as
parallel relaxation channels and thus increase the relaxation rate.

On the other hand, any theoretical model can only be confirmed by experiment and
therefore progress in the fabrication of graphene nanodevices is highly desirable, too.
In addition, several material parameters (e.g. elastic constants) remain to be settled
experimentally. The suitability of GNR for spintronics devices remains to be determined
by future work.
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A. Continuum model

The continuum model [Landau & Lifschitz, Chaikin & Lubensky] can be applied for acous-
tic modes near the center of the Brillouin zone, that is with small wavenumber. The atomic
structure becomes negligible for wavelengths much larger than the length of the lattice
vectors. The notion of continuous material does not allow for optical modes as different
atoms within the same unit cell need to vibrate against each other for these.

Strain tensor
External forces deform solid bodies to a certain extent thus changing their shape as well
as their volume. A point inside the undeformed body, described by the position vector ~r,
shall be displaced to ~r′ after the deformation. Then

~u = ~r′ − ~r (A.1)

is called the displacement vector with components ui, which usually depend on the po-
sition. The deformation of the entire object is known if ~u(~r) can be determined for the
whole body.

With dxi we denote the components of the vector connecting two infinitesimally close
volume elements prior to the deformation. In first order they change to

dx′i = dxi + dui ≈ dxi +
∂ui
∂xj

dxj (A.2)

after the deformation. Accordingly, the distance between the points changes from

dl =
√

dx2
1 + dx2

2 + dx2
3

to

dl′ =
√

dx′21 + dx′22 + dx′23 .

Taking the square of the last two equations results in dl2 = dx2
i and

dl′2 = dx′2i = (dxi + dui)
2 = dx2

i + 2dxidui + du2
i

(A.2)
≈ dl2 + 2

∂ui
∂xk

dxkdxi +
∂ui
∂xk

∂ui
∂xl

dxkdxl .

Using

∂ui
∂xk

dxidxk =
∂ui
∂xk

dxkdxi
i↔k
=

∂uk
∂xi

dxidxk
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A. Continuum model

the second term can be written as(
∂ui
∂xk

+
∂uk
∂xi

)
dxidxk ,

and we find

dl′2 ≈ dl2 + 2uikdxidxk , (A.3)

where

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
is defined as the strain tensor. As a symmetric tensor, uik can be diagonalized with
u(1) := u11, u

(2) := u22 and u(3) := u33 being the eigenvalues of uik. Then (A.3) takes the
form

dl′2 ≈ (δik + 2uik)dxidxk

= (1 + 2u(1))dx2
1 + (1 + 2u(2))dx2

2 + (1 + 2u(3))dx2
3 .

Each summand corresponds to the length shift along one of the three orthogonal prin-
cipal axes. For example the length element dx1 is elongated or compressed to dx′1 =√

1 + 2u(1)dx1. Consequently the relative length shifts (dx′i−dxi)/dxi along the principal
axes are

√
1 + 2u(i) − 1.

Usually, deformations throughout the body are small, that is, relative length shifts result-
ing from such a deformation are small compared to unity. In this case second order terms
can be neglected such that the relative length shifts become

dx′i − dxi
dxi

=
√

1 + 2u(i) − 1 ≈ u(i) , (A.4)

and the strain tensor can be written as

uik ≈
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (A.5)

The volume element is given by dV = dx1dx2dx3 and with (A.4) the deformed volume
element is

dV ′ = dx′1dx
′
2dx

′
3 = (1 + u(1))dx1(1 + u(2))dx2(1 + u(3))dx3

= (1 + u(1))(1 + u(2))(1 + u(3))dV .

Respecting only first order terms again,

dV ′ ≈ (1 + u(1) + u(2) + u(3))dV ,

such that the relative volume change becomes

dV ′ − dV

dV
≈ u(1) + u(2) + u(3) = uii . (A.6)
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Stress tensor
In a non-deformed body all molecules are arranged in their mechanical equilibrium po-
sitions, that is, all internal forces acting on a volume element sum up to zero. External
forces will change the arrangement of molecules in the body and thus cause a deformation.
The internal tensions resulting from this deformation seek to restore the non-deformed
arrangement and counteract the external forces. The effective internal force acting on a
certain volume can be denoted as ∫

~FdV , (A.7)

where said volume is integrated and ~F is the force per volume such that the force acting
on dV is ~FdV . By introducing the stress tensor σik via

Fi =
∂σik
∂xk

(A.8)

and using Gauss’ Law1 it is possible to rewrite (A.7) as∫
FidV =

∫
∂σik
∂xk

dV =

∮
σikdfk .

We notice that σikdfk is the i-th component of the force acting on the surface element df .
Consider a surface normal to the x-axis. Then σxx is the force per surface unit that acts
normal to this surface and σyx and σzx are the forces acting tangential to it, see figure
A.1.

Figure A.1.: By virtue of Gauss’ law the force acting on volume element dV , can be
expressed in terms of the strain tensor σik. The i-th component of the force
acting on the surface element df is σikdfk.

1The integral of a gradient over a volume can be replaced by an integral over the surface enclosing said
volume:

∫
∂hi
∂xi

dV =
∮
hidfi, where d~f is a vector normal to the enclosing surface.
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A. Continuum model

In mechanical equilibrium, all internal tensions on a volume element must cancel each
other, that is

∂σik
∂xk

= Fk = 0 .

We denote the external force per surface element of the body with ~P such that the surface
element df experiences the force ~Pdf . This force deforms the body until it is counteracted
by internal strain σikdfk. With such boundary conditions, equilibrium is achieved when
Pidf = σikdfk. Using dfk = ηkdf , where ηk is the unit vector normal to the surface, this
condition becomes

σikηk = Pi . (A.9)

Consider a small deformation δui. The required mechanical energy per volume is δR =
Fiδui = ∂σik

∂xk
δui. Integrating the entire volume yields∫

δRdV =

∫
∂σik
∂xk

δuidV ,

the total work required for the deformation of the body. Using partial integration and
Gauss’ Law, we find ∫

δRdV =

∮
σikδuidfk −

∫
σik

∂δui
∂xk

dV .

The first term vanishes for σik = 0 or if an infinite body with δui = 0 at infinity is
assumed. Also making use of the symmetry2 of σik the above can be written as∫

δRdV = −1

2

∫
σik

(
∂δui
∂xk

+
∂δuk
∂xi

)
dV = −1

2

∫
σikδ

(
∂ui
∂xk

+
∂uk
∂xi

)
dV

= −
∫
σikδuikdV ,

such that δR = −σikδuik. The differential internal energy per volume, dE equals the
difference between the thermal energy absorbed by the volume element and the mechanical
work performed by its internal tensions,

dE = TdS − dR = TdS + σikduik . (A.10)

A Legendre transformation in T and S turns the internal energy into the free energy,

dF = d(E − TS) = dE − SdT − TdS = −SdT + σikduik . (A.11)

From the thermodynamical potentials (A.10) and (A.11) it is easy to derive the stress
tensor:

σik =

(
∂E

∂uik

)
S

,

σik =

(
∂F

∂uik

)
T

. (A.12)

Below, we concentrate on the stress tensor in terms of the free energy.

2The stress tensor σik is not unambiguously fixed by (A.8) but allows for the addition of a gradient
∂χikl
∂xl

(where χikl = −χilk). By virtue of this gradient the stress tensor can be symmetrized. For more
details we refer the reader to [Landau & Lifschitz].
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The elastic energy functional
To proceed with our calculations we expand the free energy per volume, F (T, uik), in
powers of uik. Since the free energy is a scalar each of its summand must be a scalar,
too. The temperature is assumed to remain constant during the deformation, which is
necessary to exclude thermal expansion. Then, starting from mechanical equilibrium,
uik = 0 implies σik = 0 and therefore

∂F

∂uik

(A.12)
= 0 ,

such that no linear terms appear in our expansion (as expected for mechanical equilib-
rium). Only two independent, invariant scalars of second order can be formed from the
strain tensor, namely e. g. the square of the trace, u2

ii, and the sum3 of all squared
elements, u2

ik. For small deformations higher order terms can be neglected and we find

F =
λ3D

2
u2
ii + µ3Du

2
ik . (A.13)

The energy scale is chosen in such a way that F = 0 for the non-deformed body and the
quantities λ3D and µ3D are Lamé’s constants for a three-dimensional body. It is common
to express these constants in terms of Young’s modulus E and Poisson’s ratio σ which
are a measure for the stiffness of the material and its transverse contraction upon axial
elongation, respectively:

λ3D =
Eσ

(1− 2σ)(1 + σ)
, µ3D =

E
2(1 + σ)

. (A.14)

With these expressions, (A.13) becomes

F =
Eσ

2(1− 2σ)(1 + σ)
u2
ii +

E
2(1 + σ)

u2
ik

=
E

2(1 + σ)

(
u2
ik +

σ

1− 2σ
u2
ii

)
. (A.15)

This form of the free energy will be used to derive differential equations for deformations
of a thin plate. The stress tensor can be expressed in terms of the strain tensor,

σik
(A.12)

=
∂F

∂uik
=

E
1 + σ

(
uik +

σ

1− 2σ
ullδik

)
,

3Note that u2
ik = uikuik = u11u11 + u12u12 + . . ..
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A. Continuum model

with the explicit components

σxx =
E

1 + σ

(
uxx +

σ

1− 2σ
(uxx + uyy + uzz)

)
(A.16)

=
E

(1 + σ)(1− 2σ)
((1− 2σ)uxx + σ(uxx + uyy + uzz))

=
E

(1 + σ)(1− 2σ)
((1− σ)uxx + σ(uyy + uzz)) ,

σyy =
E

(1 + σ)(1− 2σ)
((1− σ)uyy + σ(uxx + uzz))

σzz =
E

(1 + σ)(1− 2σ)
((1− σ)uzz + σ(uxx + uyy))

σxy =
E

1 + σ
uxy , σxz =

E
1 + σ

uxz and σyz =
E

1 + σ
uyz .

Thin plates
If the thickness of a plate is much smaller than its width and length (like in the case of
graphene) all forces can be assumed to be constant with respect to the thickness such
that we are allowed to describe them with the model for a thin plate. The deformation
coordinates are

ux = 0 , uy = 0 and uz ≈ ζ(x, y) ,

where ζ is the displacement of the ”neutral” plane in the middle of the plate, as depicted
in figure A.2. Due to its small thickness only very weak forces need to be applied to the

Figure A.2.: For sufficiently small thickness h the out-of-plane displacement uz(x, y) is
sufficiently well described by the displacement of the neutral plane in the
middle of the plate, ζ(x, y).

plate surface in order to bend it. These external surface forces ~P can be neglected when
compared to internal tensions such that σiknk = 0 (see (A.9)). For a small bending the
surface normal vector ~n points along the z-axis, such that

σxz = σyz = σzz = 0 .
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These components vanish throughout the thin plate due to homogeneity. With (A.5) and
(A.16) we infer

uxz = 0 ⇒ ∂ux
∂z

= −∂uz
∂x

, uyz = 0 ⇒ ∂uy
∂z

= −∂uz
∂y

,

uzz = − σ

1− σ
(uxx + uyy) . (A.17)

For a small bending, it is sufficiently exact to replace uz by ζ(x, y). It follows that

∂ux
∂z

= −∂ζ
∂x

,
∂uy
∂z

= −∂ζ
∂y

,

and hence

ux = −z ∂ζ
∂x

, uy = −z ∂ζ
∂y

,

where integration constants have been set to zero. The components of the strain tensor
become

uxx = −z ∂
2ζ

∂x2
, uyy = −z ∂

2ζ

∂y2
, uxy = −z ∂2ζ

∂x∂y
,

uxz = uyz = 0 , uzz
(A.17)

=
σz

1− σ

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
.

With this form of the strain tensor we write (A.15) as

F =
E

2(1 + σ)

(
u2
ik +

σ

1− 2σ
u2
ii

)
=

E
2(1 + σ)

(
(u2

xx + u2
xy + u2

xz + u2
yx + u2

yy + u2
yz + u2

zx + u2
zy + u2

zz)

+
σ

1− 2σ
(u2

xx + u2
yy + u2

zz + 2uxxuyy + 2uxxuzz + 2uyyuzz)

)
=

Ez2

2(1 + σ)

{(
(∂2
xζ)2 + (∂2

yζ)2 +
σ2

(1− σ)2

(
∂2
xζ + ∂2

yζ
)2

+ 2(∂x∂yζ)2

)
+

σ

1− 2σ

(
(∂2
xζ)2 + (∂2

yζ)2 +
σ2

(1− σ)2

(
∂2
xζ + ∂2

yζ
)2

+ 2∂2
xζ∂

2
yζ

−2∂2
xζ

σ

1− σ
(∂2
xζ + ∂2

yζ)− 2∂2
yζ

σ

1− σ
(∂2
xζ + ∂2

yζ)

)}

=
Ez2

2(1 + σ)


(
(∂2
xζ)2 + (∂2

yζ)2
)
1 +

σ2

(1− σ)2
+

σ

1− 2σ

(
1 +

σ2

(1− σ)2
− 2σ

1− σ

)
︸ ︷︷ ︸

=: c1



+2(∂x∂yζ)2 + ∂2
xζ∂

2
yζ

 2σ2

(1− σ)2
+

σ

1− 2σ

(
2σ2

(1− σ)2
+ 2− 4σ

1− σ

)
︸ ︷︷ ︸

=: c2


 .
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The constants simplify to

c1 =
(1− σ)2(1− 2σ) + σ2(1− 2σ) + σ(1− σ)2 + σ3 − 2σ2(1− σ)

(1− σ)2(1− 2σ)

=
1− 2σ + σ2 − 2σ + 4σ2 − 2σ3 + σ2 − 2σ3 + σ − 2σ2 + σ3 + σ3 − 2σ2 + 2σ3

1− 2σ + σ2 − 2σ + 4σ2 − 2σ3

=
1− 3σ + 2σ2

1− 4σ + 5σ2 − 2σ3
=

1− 3σ + 2σ2

(1− 3σ + 2σ2)(1− σ)
=

1

1− σ

and

c2 =
2σ2(1− 2σ) + 2σ3 + 2σ(1− σ)2 − 4σ2(1− σ)

(1− σ)2(1− 2σ)

=
2σ2 − 4σ3 + 2σ3 + 2σ − 4σ2 + 2σ3 − 4σ2 + 4σ3

(1− σ)(1− σ − 2σ + 2σ2)

=
2σ

1− σ
· 1− 3σ + 2σ2

1− 3σ + 2σ2
=

2σ

1− σ
=

2− 2 + 2σ

1− σ
=

2

1− σ
− 2 .

Then, the free energy per volume turns out to be

F = z2 E
2(1 + σ)

(
1

1− σ
(
(∂2
xζ)2 + (∂2

yζ)2
)

+
2

1− σ
∂2
xζ∂

2
yζ + 2 (∂x∂yζ)2 − 2∂2

xζ∂
2
yζ

)
= z2 E

1 + σ

(
1

2(1− σ)

(
∂2
xζ + ∂2

yζ
)2

+ (∂x∂yζ)2 − ∂2
xζ∂

2
yζ

)
.

To obtain the free energy of the whole plate we must integrate the energy density over
its volume. In the z-direction, we integrate from −h/2 to h/2, where h is the thickness
of the plate. The other dimensions are integrated over the entire surface of the plate,

FPl =

∫
F dV

=
2Eh3

3 · 8(1 + σ)

∫∫ (
1

2(1− σ)

(
∂2
xζ + ∂2

yζ
)2

+ (∂x∂yζ)2 − ∂2
xζ∂

2
yζ

)
dx dy

=
Eh3

24(1− σ2)

∫∫ ((
∂2
xζ + ∂2

yζ
)2

+ 2(1− σ)
(
(∂x∂yζ)2 − ∂2

xζ∂
2
yζ
))

dx dy .(A.18)

Out-of-plane deformations
To find the equilibrium of the plate we have to minimize its total energy. Therefore, we
first calculate the variation of the free energy (A.18). The integral consists of two terms,
which we treat separately. With df = dx dy and 4 = ∂2

x + ∂2
y , the former term becomes

1

2
δ

∫
(4ζ)2 df =

∫
(4ζ) δ (4ζ) df .
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The correct prefactor will be restored later. With

δ (4ζ) =
∑
i

(∂i (4ζ)) δi =
∑
i

(4 (∂iζ)) δi =
∑
i

4 ((∂iζ) δi)−
∑
i

(∂iζ) (4δi)︸ ︷︷ ︸
=0

= 4
∑
i

(∂iζ) δi︸ ︷︷ ︸
= δζ

= 4 (δζ) ,

we infer

1

2
δ

∫
(4ζ)2 df =

∫
(4ζ)

(
~∇
)2

︸ ︷︷ ︸
=4

(δζ) df

=

∫
~∇ ·
(

(4ζ)~∇(δζ)
)

df︸ ︷︷ ︸
=:S1

−
∫ (

~∇(4ζ)
)
· ~∇(δζ) df︸ ︷︷ ︸

=:S2

.

Using Gauss’ Law, S1 transforms to an integral over the plate boundaries,

S1 =

∮
(4ζ)

(
~∇(δζ)

)
· ~n dl =

∮
(4ζ) (∂n(δζ)) dl ,

where ~n is the vector in the x− y-plane normal to the plate boundary and ∂n = ~n · ~∇ is
the derivative along this direction, see figure A.3 (a).

Plate

Ribbon

(a) (b)

Figure A.3.: The line element dl refers to the tangential ~l and the derivative ∂n to the
normal ~n ((a) and (b)). For a rectangular ribbon ((b) and figure 5.1) cos θ
and sin θ terms greatly simplify (A.25) and (A.26).

With Gauss’ Law once again, S2 becomes

S2 =

∫
~∇
(
δζ
(
~∇(4ζ)

))
df −

∫
δζ ~∇

(
~∇(4ζ)

)
df

=

∮
δζ
(
~∇(4ζ)

)
· ~n dl −

∫
δζ4(4ζ) df

=

∮
δζ∂n(4ζ) dl −

∫
δζ
(
42ζ

)
df .
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Now, the variation of the first term in (A.18) can be written as

1

2
δ

∫
(4ζ)2 df =

∫
δζ42ζ df −

∮
δζ∂n(4ζ) dl +

∮
4ζ∂n(δζ) dl . (A.19)

Again omitting the prefactor, we vary the second term in (A.18):

δ

∫ (
(∂x∂yζ)2 −

(
∂2
xζ
) (
∂2
yζ
)2)

df

=

∫ (
2(∂x∂yζ)(∂x∂y(δζ))−

(
∂2
x(δζ)

) (
∂2
yζ
)
−
(
∂2
xζ
) (
∂2
y(δζ)

))
df .

For the integrand we use the equality

∂x
(
∂y(δζ)∂x∂yζ − ∂x(δζ)∂2

yζ
)︸ ︷︷ ︸

=: vx

+∂y
(
∂x(δζ)∂x∂yζ − ∂y(δζ)∂2

xζ
)︸ ︷︷ ︸

=: vy

= ∂x∂y(δζ)∂x∂yζ + ∂y(δζ)∂2
x∂yζ − ∂2

x(δζ)∂2
yζ − ∂x(δζ)∂x∂

2
yζ

+∂x∂y(δζ)∂x∂yζ + ∂x(δζ)∂x∂
2
yζ − ∂2

y(δζ)∂2
xζ − ∂y(δζ)∂2

x∂yζ

= 2∂x∂yζ∂x∂y(δζ)− ∂2
x(δζ)∂2

yζ − ∂2
y(δζ)∂2

xζ ,

where the left hand side is the divergence of a two-dimensional vector ~v. Integrating this
divergence, we find∫

(∂xvx + ∂yvy) df =

∮
~v · ~n dl

=

∮ cos θ
(
∂y(δζ)∂x∂yζ − ∂x(δζ)∂2

yζ
)︸ ︷︷ ︸

=nxvx

+ sin θ
(
∂x(δζ)∂x∂yζ − ∂y(δζ)∂2

xζ
)︸ ︷︷ ︸

=nyvy

 dl .

On the plate boundaries we can express the partial derivations by

∂x = cos θ∂n − sin θ∂l , ∂y = sin θ∂n + cos θ∂l ,

and find∮ {
cos θ

(
sin θ∂n(δζ)∂y∂yζ + cos θ∂l(δζ)∂x∂yζ − cos θ∂n(δζ)∂2

yζ + sin θ∂l(δζ)∂2
yζ
)

+ sin θ
(
cos θ∂n(δζ)∂x∂yζ − sin θ∂l(δζ)∂x∂yζ − sin θ∂n(δζ)∂2

xζ − cos θ∂l(δζ)∂2
xζ
)}

dl

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − cos2 θ∂2

yζ − sin2 θ∂2
xθ
)

dl

+

∮
∂l(δζ)

(
cos2 θ∂x∂yζ + sin θ cos θ∂2

yζ − sin2 θ∂x∂yζ − sin θ cos θ∂2
xζ
)

dl

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
)

dl

+

∮
∂l(δζ)

(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl .
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By partial integration the very last integral becomes∮
∂l
(
(δζ)

(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

))
dl︸ ︷︷ ︸

=0

−
∮

(δζ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl ,

such that

δ

∫ (
(∂x∂yζ)2 −

(
∂2
xζ
) (
∂2
yζ
)2)

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
)

dl

−
∮

(δζ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl . (A.20)

Restoring all constants and with (A.19) and (A.20) we get the variation of the free energy,

δFPl = κ

{∫
δζ42ζ df (A.21)

−
∮
δζ (∂n(4ζ)

+(1− σ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

))
dl

+

∮
∂n(δζ)

(
4ζ + (1− σ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
))

dl

}
,

where we have introduced the bending rigidity

κ =
Eh3

12(1− σ2)
. (A.22)

In order to get the total energy minimum we have to add the potential energy. The
potential energy is minus the work performed against external forces. Therefore, its
variation δU is

δU = −
∫
Pzδζ df ,

where Pz is an external force per area that acts perpendicular to the x− y-plane. Finally,
the equilibrium condition is given by

δFPl − δU = 0 . (A.23)

There are area and line integrals on the left hand side. The area integral∫ (
κ42ζ − Pz

)
δζ df

only vanishes for arbitrary δζ if

κ42ζ − Pz = 0 . (A.24)
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A. Continuum model

This equation describes equilibrium for out-of-plane deformations. The line integrals in
(A.23) need to vanish as well, and this translates to boundary conditions. For free floating
edges, δζ and ∂nδζ may take any values at the boundaries such that the coefficients of
the line integrals in (A.21), (A.23) have to vanish:

− ∂n(4ζ) + (1− σ)∂l

(
cos θ sin θ

(
∂2ζ

∂x2
− ∂2ζ

∂y2

)
+
(
sin2 θ − cos2 θ

) ∂2ζ

∂x∂y

)
= 0 ,(A.25)

4ζ + (1− σ)

(
2 sin θ cos θ

∂2ζ

∂x∂y
− sin2 θ

∂2ζ

∂x2
− cos2 θ

∂2ζ

∂y2

)
= 0 .(A.26)

In the special case of a rectangular plate aligned along the x- and y-axes (figures A.3 (b)
and 5.1) and with periodic boundaries along the y-axis, (A.25) becomes

0 = ∓∂x(4ζ)± (1− σ)∂y

(
− ∂2ζ

∂x∂y

)
= ±

(
−∂3

xζ∂x∂
2
yζ − (1− σ)∂x∂

2
yζ
)

= ∂3
xζ + (2− σ)∂x∂

2
yζ = 0 . (A.27)

Accordingly, (A.26) can be written as

0 = ∂2
xζ + ∂2

yζ + (1− σ)

(
−∂

2ζ

∂y2

)
= ∂2

xζ + σ∂2
yζ ,

such that (A.27) simplifies to

0 = −σ∂x∂2
yζ + (2− σ)∂x∂

2
yζ

= 2(1− σ)∂x∂
2
yζ .

That is, with open boundaries the out-of-plane displacements of the plate need to satisfy

∂2
xζ + σ∂2

yζ = 0 , (A.28)

∂x∂
2
yζ = 0 (A.29)

along its edges.

In-plane deformations
Another type of deformation is one that takes place within the plane of the plate with
no bending involved. Again, we assume homogeneous deformations for sufficiently thin
plates such that the strain tensor only depends on x and y. Usually, such deformations
arise from forces acting on the plate edges or on the plate volume (like gravity) such that
no forces act on the surface of the plate. A vanishing force per surface element means
σikηk = 0, see (A.9). As there is no bending for in-plane deformations the normal vector
points along the z-axis and we infer

σxz = σyz = σzz = 0 .
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Since the stress tensor can be expressed in terms of the strain tensor, it must be homoge-
nous about the thickness of the plate, as well. From the above conditions and (A.16) we
derive

uxz = uyz = 0 , uzz = − σ

1− σ
(uxx + uyy) .

Using (A.16) again, the non-vanishing components of the strain tensor are

σxx =
E

1− σ2
(uxx + σuyy) , σyy =

E
1− σ2

(uyy + σuxx) , σxy =
E

1 + σ
uxy . (A.30)

For a free floating plate, no forces act on the plate edges,

σiknk = 0 , (A.31)

where ~n is the vector in the plate plane and normal to the plate boundary (ni takes the
role of dfi in figure A.1). As above, we explicitly treat the special case of a rectangular
plate as depicted in figure A.3 (b). Since ~n = (±1, 0, 0), the σxx and σyx components of
the stress tensor must vanish along the edges. That is, the deformations need to satisfy

σxx =
E

1− σ2
(uxx + σuyy) = 0 ,

⇒ ∂xux + σ∂yuy = 0 , (A.32)

σxy =
E

1 + σ
uxy = 0 ,

⇒ ∂xuy + ∂yux = 0 , (A.33)

at the plate boundaries.

Due to homogeneity along the z-direction we can use Pi = Fih in (A.8), such that the
plate is in equilibrium if the equations

h

(
∂σxx
∂x

+
∂σxy
∂y

)
+ Px = 0 ,

h

(
∂σxy
∂x

+
∂σyy
∂y

)
+ Py = 0

are satisfied. Inserting (A.30) into these equations, we get

Eh
(

1

1− σ2

∂2ux
∂x2

+
1

2(1 + σ)

∂2ux
∂y2

+
1

2(1− σ)

∂2uy
∂x∂y

)
+ Px = 0 ,

Eh
(

1

1− σ2

∂2uy
∂y2

+
1

2(1 + σ)

∂2uy
∂x2

+
1

2(1− σ)

∂2ux
∂x∂y

)
+ Py = 0 .

With

B3D := µ3D + λ3D
(A.14)

=
E

2(1 + σ)
+

Eσ

(1− 2σ)(1 + σ)
=

E(1− 2σ) + 2Eσ
2(1− 2σ)(1 + σ)

=
E

2(1 + σ − 2σ − 2σ2)
=

E
2(1− σ − 2σ2)

≈ E
2(1− σ)

, (A.34)

B3D + µ3D = 2µ3D + λ3D
(A.14)

=
E

1 + σ
+

Eσ
(1− 2σ)(1 + σ)

=
E(1− 2σ) + Eσ
(1 + σ)(1− 2σ)

=
E(1− σ)

(1 + σ)(1− 2σ)
=

E(1− 2σ − σ2)

(1− σ2)(1− 2σ)
≈ E

1− σ2
(A.35)
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A. Continuum model

we can express the bulk (B3D) and shear (µ3D) moduli of a three-dimensional body in
terms of its Young’s modulus and Poisson’s ratio4. Due to homogeneity it is common to
consider µ := µ3Dh and B := B3Dh for thin plates such that the equations for in-plane
equilibrium become

(B + µ)
∂2ux
∂x2

+ µ
∂2ux
∂y2

+B
∂2uy
∂x∂y

+ Px = 0 , (A.36)

(B + µ)
∂2uy
∂y2

+ µ
∂2uy
∂x2

+B
∂2ux
∂x∂y

+ Py = 0 . (A.37)

4Since σ ∈ [0, 0.5] it is arguable wether these approximations are justified but they seem to be common
in literature, [Landau & Lifschitz], [Mariani (2009)], [Suzuura (2002)]. For our choice of Poisson’s
ratio, σ = 0.16, σ2 = 0.0256� 1 is indeed true.
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B. Theorems about ordinary differential
equations

The ODE in section 5.3 can be solved with the appropriate theorems from calculus, (see
e. g. [Denk (2006)]). The first theorem applies for out-of-plane vibrations, (5.5), and the
second for in-plane vibrations, (5.6). While the first theorem is included in the second we
treat both theorems separately for convenience.

Theorem 1

• Let

x(k)(t) + a1x
(k−1)(t) + · · ·+ akx(t) = 0 (B.1)

be an ODE with constant coefficients. We define

y(t) :=


x(t)
x′(t)

...
x(k−1)(t)

 and A :=


0 1

. . . . . .

0 1
−ak −ak−1 · · · −a1

 .

Then (B.1) is equivalent to y′(t) = Ay(t).

• Theorem

(a) The characteristic polynomial of matrix A is given by

χA(λ) := det(λIk − A) = λk + a1λ
k−1 + · · ·+ ak−1λ+ ak .

(b) Let λ be a p-fold root of χA. Then it follows that

x1(t) := eλt , x2(t) := teλt , . . . , xp(t) := tp−1eλt

are linear independent solutions to the differential equation (B.1). Considering
these solutions for all roots of χA leads to a fundamental system.

95



B. Theorems about ordinary differential equations

Theorem 2

• Consider the ODE

y′(t) = Ay(t) , (t ∈ R) , (B.2)

where A ∈ Cn×n is a constant matrix.

• It is known from algebra that there exists an invertible matrix S with which we can
transform A to its Jordan canonical form,

S−1AS =


J(λ1)

. . .

J(λ1)
J(λ2)

. . .

 ,

where λi are pairwise different eigenvalues of A, and

Jp(λi) =


λi 1

. . . . . .

λi 1
λi


is a Jordan block of appropriate dimension p. There might be more than one Jordan
block for one λi.

• For each Jordan block, there are generalized eigenvectors h1, . . . , hp which are char-
acterized by

(A− λiIn)hj = hj−1 , (j = 1, . . . , p) ,

with h0 := 0. Consequently, h1 is an eigenvector and hj is a generalized eigenvector
of level j. The invertible matrix S consists of all the generalized eigenvectors of
matrix A. This can be seen by defining hj := Sej (j-th column of Matrix S). Then

S−1ASej = λej + ej−1

means

Ahj = S(λej + ej−1) = λhj + hj−1 , ⇒ (A− λIn)hj = hj−1 . X

• Theorem

Be hj (j = 1, . . . , p) the generalized eigenvector of level j to the eigenvalue λ of
Matrix A. Then

yj(t) := eλt
(
hj + thj−1 +

t2

2
hj−2 + · · ·+ tj−1

(j − 1)!
h1

)
is a solution of the differential equation (B.2). The system of all these solution (for
all Jordan blocks) constitutes a fundamental system.
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