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The electron spin is a very promising candidate for a
solid-state qubit [1]. Major experimental breakthroughs
have been achieved in recent years using quantum dots
formed in semiconductor heterostructures based on GaAs
technology [2, 3, 4, 5]. In such devices, the major sources
of spin decoherence have been identified as the spin-orbit
interaction, coupling the spin to lattice vibrations [6, 7,8],
and the hyperfine interaction of the electron spin with the
surrounding nuclear spins [9, 10, 11, 12, 13, 14]. There-
fore, it is desirable to form qubits in quantum dots based
on other materials, where spin-orbit coupling and hyper-
fine interaction are considerably weaker [15]. It is well
known that carbon-based materials such as nanotubes or
graphene are excellent candidates. This is so because spin-
orbit coupling is weak in carbon due to its relatively low
atomic weight, and because natural carbon consists pre-
dominantly of the zero-spin isotope12C, for which the hy-
perfine interaction is absent. Here we show how to form
spin qubits in graphene. A crucial requirement to achieve
this goal is to find quantum dot states where the usual val-
ley degeneracy is lifted. We show that this problem can be
avoided in quantum dots with so-called armchair bound-
aries. We furthermore show that spin qubits in graphene
can not only be coupled (via Heisenberg exchange) be-
tween nearest neighbor quantum dots but also over long
distances. This remarkable feature is a direct consequence
of the Klein paradox being a distinct property of the quasi-
relativistic spectrum of graphene. Therefore, the proposed
system is ideal for fault-tolerant quantum computation,
and thus for scalability, since it offers a low error rate
due to weak decoherence, in combination with a high error
threshold due to the possibility of long-range coupling.

Only very recently, the fabrication of a single layer of
graphene and the measurement of its electric transport proper-
ties have been achieved [16, 17, 18]. Two fundamental prob-
lems need to be overcome before graphene can be used to
form spin qubits and to operate one or two of them as pro-
posed in Refs. [1, 9]: (i) It is difficult to create a tunable quan-
tum dot in graphene because of the absence of a gap in the
spectrum. The phenomenon of Klein tunnelling makes it hard
to confine particles [19, 20, 21]. (ii) Due to the valley de-
generacy that exists in graphene [22, 23, 24], it is non-trivial
to form two-qubit gates using Heisenberg exchange coupling
for spins in tunnel-coupled dots. Several attempts have been
made to solve the problem (i) such as to use suitable transverse
states in graphene ribbons to confine electrons [25], to com-
bine single and bilayer regions of graphene [26], or to achieve
confinement by using inhomogeneous magnetic fields [27].
The problem (ii) has not been recognized up to now. Here
we propose a setup which solves both problems (i) and (ii)
at once. Similar to Ref. [25] we choose to confine electrons

by using suitable transverse states in a ribbon of graphene,
cf. Fig. 1. In particular, we assumesemiconducting arm-
chair boundary conditions to exist on two opposite edges of
the sample. It is by now feasible to experimentally identify
ribbons of graphene with specific boundaries on the atomic
scale. These are preferably of zigzag or of armchair type. For
an experimental realization of our proposal, one would haveto
look for ribbons with semiconducting armchair boundaries.It
is known that in such a device the valley degeneracy is lifted
[28, 29], which is the essential prerequisite for the appear-
ance of Heisenberg exchange coupling for spins in tunnel-
coupled quantum dots (see below), and thus for the use of
graphene dots for spin qubits. We show below that spin qubits
in graphene can not only be coupled between nearest neighbor
quantum dots but also over long distances. This long-distance
coupling mechanism makes use of conduction band to valence
band tunnelling processes and is, therefore, directly based on
the Klein paradox in graphene [20, 21].

We now discuss bound-state solutions in our setup, which
are required for a localized qubit. We first concentrate on a
single quantum dot which is assumed to be rectangular with
width W and lengthL, see Fig. 1. The basic idea of forming
the dot is to take a ribbon of graphene with semiconducting
armchair boundary conditions inx-direction and to electri-
cally confine particles iny-direction. The low energy prop-
erties of electrons (with energyε with respect to the Dirac
point) in such a setup are described by the 4x4 Dirac equation

− i~v

(

σx∂x + σy∂y 0
0 −σx∂x + σy∂y

)

Ψ + eV(y)Ψ = εΨ, (1)

where the electric gate potential is assumed to vary stepwise,
V(y) = Vgate in the dot region (where 0≤ y ≤ L), and
V(y) = Vbarrier in the barrier region (wherey < 0 or y > L). In
Eq. (1),σx andσy are Pauli matrices,~ is Planck’s constant
divided by 2π, v the Fermi velocity, ande the charge of an
electron. The four component spinor envelope wave function
Ψ = (Ψ(K)

A ,Ψ
(K)
B ,−Ψ

(K′)
A ,−Ψ

(K′)
B ) varies on scales large com-

pared to the lattice spacing. At this point, we are only inter-
ested in the orbital structure of the wave function. The spin
degree of freedom is neglected until the final part, where we
discuss the Heisenberg exchange coupling for spins in tunnel-
coupled quantum dots. In the wave functionΨ, A andB refer
to the two sublattices in the two-dimensional honeycomb lat-
tice of carbon atoms, whereasK andK′ refer to the vectors
K andK ’ in reciprocal space corresponding to the two valleys
in the bandstructure of graphene. The appropriate semicon-
ducting armchair boundary conditions for such a wave func-
tion have been formulated in Ref. [28] and can be written as
(α = A, B)

Ψ(K)
α |x=0 = Ψ

(K′)
α |x=0, Ψ

(K)
α |x=W = e±2π/3Ψ(K′)

α |x=W, (2)
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FIG. 1: Schematic of a graphene double quantum dot.Each dot
is assumed to have lengthL and widthW. The structure is based
on a ribbon of graphene (grey) with semiconducting armchairedges
(white). Confinement is achieved by tuning the voltages applied to
the “barrier” gates (blue) to appropriate values such that bound states
exist. Additional gates (red) allow to shift the energy levels of the
dots. Virtual hopping of electrons through barrier 2 (thicknessd)
gives rise to a tunable exchange couplingJ between two electron
spins localized in the left and the right dot. The exchange coupling
is then used to generate universal two-qubit gates.

corresponding to a widthW of the ribbon shown in Fig. 1,
whereW is not an integer multiple of three unit cells. The±
signs in Eq. (2) (as well as in Eq. (3) below) correspond to the
two possible choices of a number of unit cells that is not an
integer multiple of three. The full set of plane wave solutions
of Eq. (1) is readily determined [29]. It is well known that
the boundary condition (2) yields the following quantization
conditions for the wave vectorkx ≡ qn in x-direction [28, 29]

qn = (n± 1/3)π/W, n ∈ Z. (3)

An explicit form of the corresponding wave functions is pre-
sented in App. A and App. B. The level spacing of the modes
(3) can be estimated as∆ε ≈ ~vπ/3W, which gives∆ε ≈
30 meV, where we used thatv ≈ 106 m/s and assumed a quan-
tum dot width of aboutW ≈ 30 nm. Note that Eq. (3) also
determines the energy gap for excitations asEgap = 2~vq0.
Therefore, this gap is of the order of 60 meV, which is un-
usually small for semiconductors. This is a unique feature
of graphene that will allow for long-distance coupling of spin
qubits as will be discussed below.

We now present in more detail the ground-state solutions,
i.e. n = 0 in Eq. (3). The corresponding ground-state energy
ε can be expressed relative to the potential barrierV = Vbarrier

in the regionsy < 0 andy > L asε = eVbarrier± ~v(q2
0+ k2)1/2.

Here, the± sign refers to a conduction band (+) and a valence
band (−) solution to Eq. (1). For bound states to exist and to
decay aty→ ±∞, we require that~vq0 > |ε − eVbarrier|, which
implies that the wave vectorky ≡ k in y-direction, given by

k = i
√

q2
0 − ((ε − eVbarrier)/~v)2, (4)

is purely imaginary. In the dot region (0≤ y ≤ L), the
wave vectork in y-direction is replaced bỹk, satisfyingε =
eVgate± ~v(q2

0 + k̃2)1/2. Again the± sign refers to conduction
and valence band solutions. In the following, we focus on
conduction band solutions to the problem.

Since the Dirac equation (1) implies the continuity of the
wave function, the matching condition aty = 0 andy = L
allows us to derive the transcendental equation forε

e2ik̃L(z0,k − z0,k̃)
2 − (1− z0,kz0,k̃)

2 = 0 (5)

with z0,k ≡ (q0 + ik)/(q2
0 + k2)1/2. Eq. (5) determines the al-

lowed energiesε for bound states. In order to analyze the
solutions to Eq. (5), we distinguish two cases, one wherek̃
is real, and the other, wherẽk is purely imaginary. The two
cases are distinguished by the condition|ε − eVgate| ≥ ~vq0

and|ε − eVgate| < ~vq0, respectively. Furthermore, we assume
thatVgate , Vbarrier, i.e., z0,k , z0,k̃. If we relax this assump-
tion, we can show that for the casez0,k = z0,k̃ only a single
solution to Eq. (5) exists, namelyz0,k̃ = 1, which implies that
k̃ = 0. The corresponding wave function to this solution van-
ishes identically (see App. A for further details). In the case
wherek̃ is purely imaginary, there is no bound-state solution.
This is due to the fact that such a solution would have to exist
directly in the bandgap. We now analyze solutions for realk̃.
In the corresponding energy window

|ε − eVgate| ≥ ~vq0 > |ε − eVbarrier|, (6)

we can simplify Eq. (5) considerably, obtaining

tan(̃kL) =
~vk̃

√

(~vq0)2 − (ε − eVbarrier)2

(ε − eVbarrier)(ε − eVgate) − (~vq0)2
. (7)

We show a set of solutions to Eq. (7) for a relatively short
dot (q0L = 2) as well as a longer dot (q0L = 5) in Fig. 2.
The number of bound statesN (for n = 0) is maximal if
∆V = Vbarrier− Vgate is exactly as large as the size of the gap
Egap = 2~vq0, thenNmax =

⌈√
8q0L/π

⌉

, where⌈x⌉ is the in-
teger just larger thanx. The level spacing associated with the
allowed solutions of Eq. (7) increases asL decreases and has
a rather complicated parameter dependence. It can, however,
be estimated to be of the order of∆ε ≈ ~vπ/max{W, L}, which
is in the energy range of a few tens of meV as mentioned be-
low Eq. (3). In Fig. 3, we show the energy bands of a single
dot and two neighboring barrier regions as well as a double
dot setup with three barrier regions. The double dot case il-
lustrates how we make use of the Klein paradox to couple two
dots.

A particular example of a wave function is shown in
Fig. 4. It is a ground-state solution under the parameter choice
e(Vbarrier− Vgate) = 0.6~vq0, andq0L = 2 (indicated by the ar-
row in Fig. 2). The weight of the wave function on theA
andB lattice sites is different, however, the integrated weight
is the same as required by the normalization condition [28].
Ground-state solutions (i.e. the lowest lying (red) lines in
Fig. 2) have no nodes in the dot region – similar to the cor-
responding problem of confined electrons that obey the non-
relativistic Schrödinger equation. Excited-state solutions in
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FIG. 2: Bound state solutions for two different dot sizes.Bound-
state solutions of a relatively long (q0L = 5, left panel) and a shorter
(q0L = 2, right panel) quantum dot are shown. The diagonal straight
lines mark the area in which bound-state solutions can occur. The
arrow marks the solution for which the wave function is plotted in
Fig. 4.

parameter regions in which they exist, do have nodes in the
dot region, which is shown in Fig. 8 of App. C.

We now turn to the case of two coupled graphene quantum
dots, separated by a potential barrier, as sketched in Fig. 1,
each dot filled with a single electron. It is interesting to ask
whether the spinsSi of these two electrons (i = 1, 2) are
coupled through an exchange coupling,Hexch = JS1 · S2, in
the same way as for regular semiconductor quantum dots [9],
because this coupling is, in combination with single-spin ro-
tations, sufficient to generate all quantum gates required for
universal quantum computation [1]. The exchange coupling
is based on the Pauli exclusion principle which allows for
electron hopping between the dots in the spin singlet state
(with opposite spins) of two electrons, but not in a spin triplet
(with parallel spins), thus leading to a singlet-triplet split-
ting (exchange energy)J. However, a singlet-triplet split-
ting J , 0 only occurs if the triplet state with two elec-
trons on the same dot in the ground state is forbidden, i.e.,
in the case of a singlenon-degenerateorbital level. This is
a non-trivial requirement in a graphene structure, as in bulk
graphene, there is a two-fold orbital (“valley”) degeneracy of
states around the pointsK andK ′ in the first Brillouin zone.
This valley degeneracy is lifted in our case of a ribbon with
semiconducting armchair edges, and the ground-state solu-
tions determined by Eq. (7) are in fact non-degenerate. The
magnitude of the exchange coupling within a Hund-Mulliken
model is [9] J = (−UH + (U2

H + 16t2H)1/2)/2 + V, wheret
is the tunnelling (hopping) matrix element between the left
and right dot,U is the on-site Coulomb energy, andV is the
direct exchange from the long-range (inter-dot) Coulomb in-
teraction. The symbolstH andUH indicate that these quan-
tities are renormalized from the bare valuest andU by the
inter-dot Coulomb interaction. Fort ≪ U and neglecting
the long-ranged Coulomb part, this simplifies to the Hub-
bard model resultJ = 4t2/U wheret is the tunnelling (hop-
ping) matrix element between the left and right dot andU
is the on-site Coulomb energy. In the regime of weak tun-
nelling, we can estimatet ≈ ε

∫

Ψ
†
L(x, y)ΨR(x, y)dx dy, where

ΨL,R(x, y) = Ψ(x, y ± (d + L)/2) are the ground-state spinor

FIG. 3: Energy bands for single and double dot case. (a)Energy
bands for two barrier regions and a single dot. The red area marks a
continuum of states in the valence bands and the blue area marks a
continuum of states in the conduction bands. In the barrier regions,
we indicate the energy bands of the quantized modes due to trans-
verse confinement. All modes are non-degenerate solutions in valley
space. They come pairwise in a sense that always two of them are
separated by a distance~vq0 in energy space. In the figure, this is il-
lustrated for the energy levels corresponding to wave vectors q0 and
q−1 as well asq1 andq−2. In the dot region, the electric confinement
in longitudinal direction yields an additional level structure, i.e. the
one shown in Fig. 2. For clarity, we only show the dot levels that
are located in the gap of the barrier regions and are, therefore, bound
states. In the figure, we choose to present a situation with three bound
states in total: Two of them are of then = 0 series (straight red lines
in the center region) and a single one is of then = −1 series (straight
green line in the center region).(b) Energy bands for a double dot
setup. A single bound state (straight black line) is shown inthe con-
duction band of the left dot and two bound states are shown in the
conduction band of the right dot. They are coupled via the contin-
uum in the valence band of the central barrier which is enabled by
the Klein paradox.

wave functions of the left and right dots andε is the single-
particle ground state energy. Note that the overlap integral
vanishes if the states on the left and right dot belong to dif-
ferent transverse quantum numbersqnL , qnR. For the ground
state mode, we havenL = nR = 0, and the hopping matrix
element can be estimated ford & L as

t ≈ 4εα0δ
∗
0Wdz0,k exp(−d|k|), (8)

whereα0 andδ0 are wave function amplitudes (with dimen-
sion 1/length) that are specified in App. C. As expected, the
exchange coupling decreases exponentially with the barrier
thickness, the exponent given by the “forbidden” momen-
tum k in the barrier, defined in Eq. (4). The amplitudet
can be maximized by tuning to a bound-state solution, where
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FIG. 4: Ground-state wave function. Normalized squared wave
functions|ΨA|2 = |Ψ(K)

A |2 = |Ψ
(K′)
A |2 and |ΨB|2 = |Ψ(K)

B |2 = |Ψ
(K′)
B |2 for

the bound state solution for the parameter choicee(Vbarrier− Vgate) =
0.6~vq0, andq0L = (π/3)L/W = 2 (indicated by the arrow in Fig. 2).
The corresponding energy is given byε ≈ 1.31 · ~vq0. The dotted
lines indicate the dot region 0≤ y ≤ L.

|ε − eVbarrier| approaches~vq0 (from below). Then,d|k| < 1.
Such a fine-tuning can be easily achieved in graphene quan-
tum dots, where the small band gap allows to sweep through it
and, therefore, to use conduction and valence band states (of
the barrier region) to couple quantum dots. In Fig. 3(b), we
sketch the energy bands for the double dot case which shows
how confined states in the two dots can be coupled via co-
tunnelling processes through the continuum of states in the
valence band of the central barrier region. Remarkably, this
opens up the possibility for long distance coupling of electron
spins because, in the limit|ε − eVbarrier| → ~vq0, the coupling
t depends only weakly on the distanced between the quantum
dots. However, already for bound state solutions with|k|d > 1,
a coupling over a length exceeding several times the dot size
is possible. For the situation where we couple two ground
states in the quantum dots, we find, for instance, a solution,
where |k|d = 4, d = 10L, and the coupling can still be as
large ast ≈ 0.03ε for highly localized qubits. This example
is shown in Fig. 5. If we couple a ground state in the one dot
with an excited state in the other dot, the hopping matrix ele-
mentt can be even larger. The corresponding wave functions
for that case are illustrated in Fig. 9. The values oft, U, and
J can be estimated as follows. The tunnelling matrix element
t is a fraction ofε ≈ 30 meV (for a width ofW ≈ 30 nm),
we obtain thatt ≈ 0.5 . . .2.5 meV. The value forU depends
on screening which we can assume to be relatively weak in
graphene [24], thus, we estimate, e.g.,U ≈ 10 meV, and ob-
tain J ≈ 0.1 . . .1.5 meV.

For the situation with more than two dots in a line, it turns
out that we can couple any two of them with the others being
decoupled by detuning. We mention here that our model is
based on a single particle picture. Such a model effectively
captures effects of Coulomb interactions as far as they can be
described within the constant interaction model for quantum
dots [30]. The Coulomb interaction then only shifts the energy
levels in each dot by a constant. In Fig. 6, we illustrate the sit-
uation of three dots in a line where the left and the right dot are

FIG. 5: Long-distance coupling of two qubit ground states.The
normalized squared wave functions|Ψ|2 = |Ψ(K)

A |2+ |Ψ
(K′)
A |2+ |Ψ

(K)
B |2+

|Ψ(K′)
B |

2 of two qubits separated by a distanced = 10L, whereL is the
length of each quantum dot, are plotted next to each other. A ground
state (of the series with the transverse quantum numbern = 0) in the
left dot is coupled to a ground state (of the same series withn = 0)
in the right dot. The coupling is as large ast = 0.03ε, whereε is the
ground-state energy. Furthermore, the qubits are highly localized,
which can be seen from the ratioP(in)/P(out). Here, P(in) is the
probability of the electron to be inside the corresponding dot and
P(out) is probability to be outside the dot in the barrier regions.The
parameters chosen for the potential (in units of~vq0/e) areVbarrier1=

Vbarrier3= 1, Vbarrier2= 1.65,Vgate1= Vgate2= −0.5.

FIG. 6: Triple quantum dot setup. The energy bands of a triple
quantum dot setup are shown in which dot 1 and dot 3 are strongly
coupled via cotunnelling processes through the valence bands of bar-
rier 2, barrier 3, and dot 2. The center dot 2 is decoupled by detun-
ing. The energy levels are chosen such that∆ε2 ≪ ∆ε1. The triple
dot example illustrates that in a line of quantum dots, it is possible to
strongly couple any two of them and decouple the others by detun-
ing. This is a unique feature of graphene and cannot be achieved in
semiconductors such as GaAs that have a much larger gap.

strongly coupled and the center dot is decoupled by detuning.
The tunnel coupling of dot 1 and dot 3 is then achieved via
Klein tunneling through the valence band of the two central
barriers and the valence band of the center dot. It is important
for the long-distance coupling that the exchange coupling of
qubit 1 and qubit 3 is primarily achieved via the valence band
and not via the qubit level of the center dot – leaving the qubit
state of dot 2 unchanged. Using the standard transition matrix
approach, we can compare the transition rate of coupling dot
1 and dot 3 via the continuum of states in the valence band of
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the center dot (which we callΓVB) with the transition rate via
the detuned qubit level of the center dot (which we callΓQB).
We obtain for the ratio (see App. D for the derivation)

ΓVB/ΓQB ≈ (L/W) ln(4∆/Egap), (9)

where∆ ≈ 6 eV is the band width of graphene. There-
fore, by increasing the aspect ratioL/W, it is possible to in-
crease the rateΓVB with respect toΓQB. For L/W = 2 and
Egap = 60 meV, we find thatΓVB/ΓQB ≈ 12, meaning that
the qubit level in dot 2 is barely used to couple dot 1 and dot
3. This is a unique feature of graphene quantum dots due to
the small and highly symmetric band gap, which is not known
to exist for other semiconducting materials. The availability
of non-local interactions is important in the context of quan-
tum error correction, as it raises the error threshold for fault-
tolerant quantum computation [31]. In conclusion, we have
proposed a setup to form spin qubits in quantum dots based on
graphene nanoribbons with semiconducting armchair bound-
aries. For such a system, we have calculated bound states of a
tunable dot and outlined how two-qubit gates can be realized.
We expect very long coherence times for such spin qubits
since spin-orbit coupling and hyperfine interaction are known
to be weak in carbon, see App. E. Furthermore, we have found
that the high flexibility in tuning graphene quantum dots in
combination with conduction band to valence band tunnelling
based on the Klein paradox allows for long distance coupling
of electron spins. Therefore, we propose a system which can
serve as the fundamental building block for scalable and fault-
tolerant quantum computing.

APPENDIX A: GENERAL MODEL

We now present in detail how to derive solutions for bound
states in a graphene quantum dot. The dot is assumed to
be rectangular with widthW and lengthL as illustrated in
Fig. 1. The basic idea of forming the dot is to take a strip
of graphene withsemiconducting armchairboundary condi-
tions in x-direction and to electrically confine particles iny-
direction. Transport properties of a similar system have been
discussed in Ref. [25].

The low energy properties of electrons with energyε in
such a setup are described by the 4x4 Dirac equation

− i~v

(

σx∂x + σy∂y 0
0 −σx∂x + σy∂y

)

Ψ+eV(y)Ψ = εΨ, (A1)

with the electric gate potential

V(y) =

{

Vgate, (0 ≤ y ≤ L),
Vbarrier, otherwise. (A2)

In Eq. (A1),σx andσy are Pauli matrices, ~ is Planck’s con-
stant devided by 2π, e is the electron charge, andv is the
Fermi velocity. The four component envelope wave function
Ψ = (Ψ(K)

A ,Ψ
(K)
B ,−Ψ

(K′)
A ,−Ψ

(K′)
B ) varies on scales large com-

pared to the lattice spacing. Here,A and B refer to the two
sublattices in the two-dimensional honeycomb lattice of car-
bon atoms, whereasK andK′ refer to the vectors in reciprocal

space corresponding to the two valleys in the bandstructureof
graphene.

Plane wave solutions to Eq. (1) take the form [29]

Ψ
(+)
n,k(x, y) = χ(+)

n,k(x)eiky, Ψ
(−)
n,k(x, y) = χ(−)

n,k(x)e−iky (A3)

with
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and
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

























1
−zn,k

0
0





























e−iqnx + b′n,−





























0
0

zn,k

1





























e−iqnx.

(A5)

The complex numberzn,k is given by

zn,k = ±
qn + ik
√

k2 + q2
n

. (A6)

The energy of the state in the barrier regions (y < 0 andy > L,
whereV = Vbarrier) is given by

ε = eVbarrier± ~v
√

q2
n + k2. (A7)

In the dot (0≤ y ≤ L, whereV = Vgate) the wave vectork is
replaced bỹk, satisfying

ε = eVgate± ~v
√

q2
n + k̃2. (A8)

The± sign in Eqs. (A6) – (A8) refers to conduction and va-
lence bands. In the following, we concentrate on conduction
band solutions of the problem (keeping in mind that there is
always a particle-hole conjugated partner solution).

The transverse wave vectorqn as well as the coefficients
an,±, a′n,±, bn,±, b′n,± of the n-th mode are determined (up to a
normalization constant) by the boundary conditions atx = 0
andx = W. We consider a class of boundary conditions for
which the resulting parameters are independent of the longi-
tudinal wave vectorsk and k̃. We are particularly interested
in semiconducting armchair boundary conditions defined by
[28]

Ψ|x=0 =

(

0 11
11 0

)

Ψ|x=0, (A9)

Ψ|x=W =

(

0 e−i2πµ/311
ei2πµ/311 0

)

Ψ|x=W, (A10)
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whereµ = ±1 is defined by the width of the graphene strip
W = a0(3M + µ), with M a positive integer (a0 = 0.246 nm is
the graphene lattice constant), and11 is the 2x2 unit matrix. A
strip whose width is an integer multiple of three unit cells (µ =
0) is metallic and not suitable for spin qubit applications.The
states of a semiconductor strip are non-degenerate (in valley
space):

qn =
π

W
(n+ µ/3), n ∈ Z (A11)

with an,± = b′n,± = 0, a′n,± = bn,± (for µ = −1) or a′n,± =
bn,± = 0, an,± = b′n,± (for µ = 1). Note thatqn determines the
size of the gap for each moden that is due to the boundary
conditions. The size of the gap of moden is given by 2~vqn.
For concreteness, we consider the case ofµ = 1 only. It can
be shown that for the case ofµ = −1, the bound states and
normalized squared wave functions have exactly the same de-
pendence on the parameters of a quantum dot,Vbarrier, Vgate,
W, andL.

Our ansatz for a bound state solution at energyε to Eq. (1)
then reads

Ψ =



























α′nχ
(−)
n,k(x)e−iky, if y < 0,

β′nχ
(+)
n,k̃

(x)eik̃y+ γ′nχ
(−)
n,k̃

(x)e−ik̃y, if 0 ≤ y ≤ L,

δ′nχ
(+)
n,k(x)eik(y−L), if y > L.

(A12)

For bound states, the wave function should decay fory→ ±∞,
so we require that

k = i
√

q2
n − (ε − eVbarrier)2/(~v)2, (A13)

where~vqn > |ε − eVbarrier| always has to hold.
To find bound state solutions, we have to analyze the fol-

lowing set of equations (coming from wave function matching
at y = 0 andy = L)

αn

(

zn,k

1

)

= βn

(

1
zn,k̃

)

+ γn

(

zn,k̃
1

)

, (A14)

δn

(

1
zn,k

)

= βn

(

1
zn,k̃

)

eS + γn

(

zn,k̃
1

)

e−S,

whereαn = α
′
nan,−, βn = β

′
nan,+, γn = γ

′
nan,−, δn = δ′nan,+, and

S ≡ ik̃L. We can write Eq. (A14) as





























zn,k −1 −zn,k̃ 0
1 −zn,k̃ −1 0
0 −eS −zn,k̃e

−S 1
0 −zn,k̃e

S −e−S zn,k

























































αn

βn

γn

δn





























= 0. (A15)

The allowed energy valuesε are readily determined by finding
the roots of the determinant of the matrix on the lhs of the
latter equation

e2S(zn,k − zn,k̃)
2 − (1− zn,kzn,k̃)

2 = 0. (A16)

A rather obvious solution iszn,k̃ = 1 (which implies that
S = 0) corresponding to

ε = ±~vqn + eVgate. (A17)

However, the corresponding wave functions to the allowed en-
ergy solutions (A17) vanish identically. So, in order to pro-
ceed, we have to find other (less trivial) solutions to the tran-
scendental equation (A16). Since the casezn,k = zn,k̃ only
has the trivial solution (A17), we can assume thatzn,k , zn,k̃,
which means thatVbarrier, Vgate. Then, we find that

eS = ±
1− zn,kzn,k̃

zn,k − zn,k̃
. (A18)

To analyze the solutions of Eq. (A18), we distinguish two
cases, one where

S = ik̃L (A19)

is purely imaginary (i.e.,̃k is real), and another, whereS is
real. The two cases are distinguished by the criterion|ε −
eVgate| ≥ ~vqn and |ε − eVgate| < ~vqn, respectively. In the
former case, since the lhs of Eq. (A18) has modulus unity, also
the rhs must be unimodular, which is satisfied if in addition
|ε − eVbarrier| ≤ ~vqn. This case, where the equation for the
argument of Eq. (A18) remains to be solved, is discussed in
Sec. B. The latter case whereS is real has no solutions.

Indeed, let us rewrite Eq. (A18) as follows:

e2S − 1 =
−2k̃k

q2
n − (ε − eVbarrier)(ε − eVgate)/(~v)2 + k̃k

. (A20)

Taking into account thatq2
n > (ε − eVbarrier)(ε − eVgate)/(~v)2

andk̃k ∈ R, we find that the left and right sides of this equation
have different signs, therefore, Eq. (A18) has no roots for any
purely imaginarỹk.

APPENDIX B: BOUND STATE SOLUTIONS

We now restrict ourselves to the energy window

|ε − eVgate| ≥ ~vqn ≥ |ε − eVbarrier|. (B1)

Thenk̃ is real, therefore|eS| = 1 and|zn,k̃| = 1. Furthermore,
zn,k is real. We definezn,k̃ ≡ eiθn, where

θn = arctan(̃k/qn). (B2)

It is easy to verify that in the energy window (B1)
∣

∣

∣

∣

∣

∣

1− zn,kzn,k̃

zn,k − zn,k̃

∣

∣

∣

∣

∣

∣

= 1. (B3)

We can now rewrite Eq. (A18) as

tan(̃kL) =
sinθn(1− z2

n,k)

2zn,k − (1+ z2
n,k) cosθn

(B4)

and further simplify this expression by using that

sinθn =
k̃/qn

√

1+ (k̃/qn)2

, (B5)

cosθn =
1

√

1+ (k̃/qn)2

. (B6)
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After some algebra, we obtain

tan(̃kL) =
−ik̃k

(ε − eVbarrier)(ε − eVgate)/(~v)2 − q2
n
. (B7)

The latter equation in combination with Eq. (A13) yields
Eq. (7). Numerical solutions to Eq. (B7) are shown in Fig. 2.

By applying different voltages to the gate and the barri-
ers we shift the energy bands of the graphene ribbon un-
der the barriers with respect to that of the quantum dot. A
bound state in the quantum dot is allowed once the energy
of the state hits the band gap of the barriers. If the differ-
ence of the barrier and gate voltages∆V = |Vbarrier − Vgate|
is less than the energy of the gap 2~v|qn| for n-th subband,
k̃ of a bound state lies in the interval [−k̃max, k̃max], where
k̃max is found from the conditionε(k̃max) = Vbarrier + ~v|qn|
and, therefore,̃kmax = e∆V

√

1+ 2~v|qn|/e∆V. The num-
ber of bound states (for a given subband indexn) is propor-
tional to the length of the quantum dotL and is given by
N = ⌈k̃maxL/π⌉ (⌈x⌉ is the integer just larger thanx) . The
number of the bound states of then-th subband is maximal,
when the barrier-gate voltage difference equals the energy
band gap (∆V = 2~v|qn|), and soNmax = ⌈

√
8|qn|L/π⌉. In

the case of∆V > 2~v|qn|, the top of the valence band of the
graphene ribbon under the barriers becomes higher than the
bottom of the conduction band of the quantum dot, therefore,
there are no bound states with energiesε < eVbarrier− ~v|qn|
and|k̃| of a bound state lies in the interval [k̃min, k̃max], where
k̃min is found from the conditionε(k̃min) = Vbarrier − ~v|qn|
(k̃min = e∆V

√

1− 2~v|qn|/e∆V), therefore, bound states lie in
the energy windoweVbarrier− ~v|qn| ≤ ε ≤ eVbarrier+ ~v|qn| (as
shown in Fig. 2) and the number of the bound states is given
by N = ⌈k̃maxL/π⌉ − ⌈k̃minL/π⌉.

With increasing the barrier-gate voltage difference,
a m-th bound state appears at∆V0 = −~v|qn| +
~v

√

q2
n + (π/L)2(m− 1)2 with the energyε(0)

m = Vgate+ ∆V0 +

~v|qn| and ends up at∆V1 = ~v|qn| + ~v
√

q2
n + (π/L)2m2 with

the energyε(1)
m = Vgate+ ∆V1 − ~v|qn| (see Fig. 2).

APPENDIX C: WAVE FUNCTION

Following Brey and Fertig [28], we write the wave function
as

Ψ(x, y) =

































Ψ
(K)
A (x, y)
Ψ

(K)
B (x, y)

−Ψ(K′)
A (x, y)

−Ψ(K′)
B (x, y)

































(C1)

and give solutions for each component separately. As men-
tioned above, the subscriptsA and B refer to the two sub-
lattices in the two-dimensional honeycomb lattice of carbon
atoms and the superscriptsK andK′ refer to the two valleys
in graphene. Note that the normalization condition [28]

∫

ddx dy
[

|Ψ(K)
µ (x, y)|2 + |Ψ(K′)

µ (x, y)|2
]

=
1
2

(C2)

-5 0 5 10
y qn

0

0.02

0.04

0.06

|Ψ
|2 /(

q n)2

|Ψ
A
|
2

|Ψ
B
|
2

FIG. 7: Ground-state wave function. Normalized squared wave
function |ΨA|2 = |Ψ(K)

A |2 = |Ψ
(K′)
A |2 and |ΨB|2 = |Ψ(K)

B |2 = |Ψ
(K′)
B |2 for

the ground state solution of a dot of lengthqnL = 5 with correspond-
ing energyε = 1.101~vqn. Here,e(Vbarrier− Vgate) = 0.5 ~vqn. The
dotted lines indicate the dot region 0≤ yqn ≤ 5.

(for µ = A, B each) finally determines the normalization con-
stant of the wave function. With the ansatz (A12) we explicitly
obtain the following components of the wave function

Ψ
(K)
A (x, y) =



















αnzn,keiqnxe−iky,

βneiqnxeik̃y + γnzn,k̃e
iqnxe−ik̃y,

δneiqnxeik(y−L),

(C3)

Ψ
(K)
B (x, y) =



















αneiqnxe−iky,

βnzn,k̃e
iqnxeik̃y+ γneiqnxe−ik̃y,

δnzn,keiqnxeik(y−L),

(C4)

−Ψ(K′)
A (x, y) =



















αnzn,ke−iqnxe−iky,

βne−iqnxeik̃y + γnzn,k̃e
−iqnxe−ik̃y,

δne−iqnxeik(y−L),

(C5)

−Ψ(K′)
B (x, y) =



















αne−iqnxe−iky,

βnzn,k̃e
−iqnxeik̃y+ γne−iqnxe−ik̃y,

δnzn,ke−iqnxeik(y−L).

(C6)

In the latter equations, the first line corresponds to the region
in space, wherey < 0, the second line to 0≤ y ≤ L, and the
third line toy > L. Thus, we obtain that

|Ψ(K)
A (x, y)|2 = |Ψ(K′)

A (x, y)|2, (C7)

|Ψ(K)
B (x, y)|2 = |Ψ(K′)

B (x, y)|2. (C8)

We now plot the normalized squared wave function of a
ground-state solution and a excited-state solution of a dotwith
lengthqnL = 5 in Figs. 7 and 8, respectively. These are ob-
tained from Fig. 2 under the choice thate(Vbarrier− Vgate) =
0.5~vqn. Evidently, the ground-state solution has no nodes in
the dot region, whereas the excited-state solution has nodes.



8

-5 0 5 10
y qn

0

0.02

0.04

0.06

|Ψ
|2 /(

q n)2
|Ψ

A
|
2

|Ψ
B
|
2

FIG. 8: Excited-state wave function. Normalized squared wave
function |ΨA|2 = |Ψ(K)

A |2 = |Ψ
(K′)
A |2 and |ΨB|2 = |Ψ(K)

B |2 = |Ψ
(K′)
B |2 for

the first excited state solution of a dot of lengthqnL = 5 with corre-
sponding energyε = 1.34 ~vqn. Here,e(Vbarrier− Vgate) = 0.5 ~vqn.
The dotted lines indicate the dot region 0≤ yqn ≤ 5.

FIG. 9: Long-distance coupling of a ground state and an excited
state. The normalized squared wave functions|Ψ|2 = |Ψ(K)

A |2 +
|Ψ(K′)

A |2 + |Ψ
(K)
B |2 + |Ψ

(K′)
B |2 of two qubits separated by a distance

d = 10L, whereL is the length of each quantum dot, are plotted
next to each other. A ground state (of the series with the transverse
quantum numbern = 0) in the left dot is coupled to an excited state
(of the same series withn = 0) in the right dot. The coupling is
as large ast = 0.06ε, whereε is the ground-state energy of the left
dot. Furthermore, the qubits are still highly localized, which can be
seen from the ratioP(in)/P(out). Here,P(in) is the probability of the
electron to be inside the corresponding dot andP(out) is probability
to be outside the dot in the barrier regions. The parameters cho-
sen for the potential (in units of~vq0/e) areVbarrier1 = Vbarrier3 = 1,
Vbarrier2= 1.65,Vgate1= −0.5, andVgate2= −0.9.

APPENDIX D: LONG-DISTANCE COUPLING

1. Long-distance coupling of two qubits

Here, we discuss a particular example of long-distance cou-
pling of two qubits separated by a distanced. The coupling

is achieved via a continuum of states in the valence band of
the barrier region as shown in Fig.3(b) of the Letter. There-
fore, the long-range coupling is enabled by the Klein paradox.
In the weak tunneling regime, the hopping matrix element is
given by

t ≈ ε
∫

Ψ
†
L(x, y)ΨR(x, y)dx dy, (D1)

whereΨL,R(x, y) = Ψ(x, y ± (d + L)/2) are the spinor wave
functions of the left and right dots andε is the single-particle
energy of the coupled levels. The integration in transversex-
direction is trivial and just gives a factorW. The integration
in longitudinaly-direction can be restricted to the integration
window y ∈ [−d/2, d/2] if the wave functions are predomi-
nantly localized in the dot regions. Then, the hopping matrix
element can be estimated ford & L as

t ≈ 4εα0δ
∗
0Wdz0,k exp(−d|k|), (D2)

whereα0 and δ0 are wave function amplitudes specified in
Eqs. (C3) – (C6). In Eq. (D2), we assumed that only levels
of the series corresponding to then = 0 transverse mode are
coupled. It is easy to relax this assumption because, if higher
transverse modes form bound states, then only modes with
nL = nR contribute tot, wherenL/R is the transverse quantum
number in the left/right dot. In Fig. 9, we demonstrate that
a rather large coupling oft = 0.06ε can be achieved over a
distance as large as ten times the size of the quantum dots
(see also Fig. 5 for comparison). Note that the qubits in this
example are well localized in the corresponding dot regions:
The probability of the electron in the left dot to be in the dot
regionP(in) is 7.2 times larger than to be in the barrier regions
P(out). For the right dot, the ratio ofP(in)/P(out) = 2.7 is a
bit smaller but the electron is still predominantly localized in
the dot region.

2. Long-distance coupling in multiple quantum dot setup

In Fig.6, we propose a triple quantum dot setup in which
dot 1 and dot 3 are strongly coupled and the center dot 2 is
decoupled by detuning. It is important that dot 1 and dot 3
are coupled via the valence band states of dot 2 and not via
the (detuned) qubit level of dot 2. Otherwise, the spin of the
decoupled qubit level would be affected by the coupling of the
other qubits which is unwanted in the proposed long-distance
coupling scheme. We assume that the gates that put the three
dots in the Coulomb blockade regime are set in such a way that
cotunnelling processes from dot 1 via dot 2 to dot 3 happen in
the following order: First, an electron tunnels from dot 2 to
dot 3 and then an electron tunnels from dot 1 to dot 2. The
system is described by the Hamiltonian

H = H0 + HT , (D3)

where the kinetic term describes three qubit levels (α = 1, 2, 3)
and the continuum of states in the valence band of dot 2

H0 =
∑

α=1−3

∑

σ=↑,↓
Eα,σa†α,σaα,σ +

∑

k

∑

σ=↑,↓
εk,σb

†
k,σbk,σ (D4)
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and the tunnelling Hamiltonian reads

HT = t
∑

σ

(

a†1,σa2,σ + a†2,σa3,σ + H.c.
)

+ t
∑

k,σ

(

a†1,σbk,σ + b†k,σa3,σ + H.c.
)

. (D5)

In Eq. (D4), aα,σ and bk,σ annihilate electrons with spinσ
in the qubit level of dotα and in the valence band of dot 2,
respectively. We assume thatE1,σ = E3,σ (i.e. qubit 1 and
qubit 3 are on resonance) and∆ε1 = E2,σ − E1,σ ≈ Egap =

2~vq0 (see Fig. 6). In Eq. (D5), we make the approximation
that all tunnelling matrix elementst depend only very weakly
on energy and are real. The transmission rate from an initial
state |i〉 to a final state| f 〉 can be calculated using Fermi’s
golden rule

Wf i =
2π
~
|〈 f |T(εi)|i〉|2δ(ε f − εi) (D6)

with the transition matrix given by (up to second order inHT )

T(ε) = HT + HT
1

ε + iη − H0
HT + . . . . (D7)

We can putη = 0 in the latter equation because we are only
interested in off-resonant cotunnelling processes. This means
that ∆ε2 (see Fig. 6) should be finite because we want to
have well-localized qubit states. The corresponding matrix
elements of the T-matrix (D7) may be written as

(T(ε))k,k′ = (HT)k,k′ +
∑

k′′
(HT)k,k′′

1
ε − εk′′

(HT)k′′,k′ + . . . (D8)

Now, we want to calculate|T13|2 ≡ |〈3|T(E1,σ)|1〉|2, where|1〉
and|3〉 are the ground states of qubit 1 and 3, respectively. The
lowest non-vanishing contribution of|T13|2 is of cotunnelling
type, i.e., of fourth order int. It is possible to separate the
different contributions to|T13|2 into three terms, namely

|T13|2 = |T(QB)
13 |

2 + |T(VB)
13 |

2 + 2 Re [(T(QB)
13 )∗T(VB)

13 ]. (D9)

In the latter equation,|T(QB)
13 |

2 determines the transition rate

via the qubit level of dot 2 (the unwanted process),|T(VB)
13 |

2

determines the transition rate via the continuum of states
in the valence band of dot 2 (the wanted process), and
2 Re [(T(QB)

13 )∗T(VB)
13 ] is the interference term of the two paths.

It is straightforward to derive that (for a given spinσ of qubit
2)

T(QB)
13 (E1,σ) =

t2

E1,σ − E2,σ
. (D10)

This has to be compared with

T(VB)
13 (E1,σ) = t2

∫ ∆

Egap/2
dE
ν0(E)

E1,σ − E

≈ − Lt2

π~v
ln(4∆/Egap), (D11)

where

ν0(E) =
L
~vπ

E
√

E2 − (Egap/2)2
(D12)

is the density of states of the moden = 0 with Egap = 2~vq0.
In Eq. (D11), we integrate over the whole band width of the
valence band (bounded by∆ ≈ 6 eV). The approximate result
in the second line of Eq. (D11) holds for the hierarchy of ener-
gies∆ ≫ Egap≫ E1,σ. (In a more general case, the integral in
Eq. (D11) can still be evaluated analytically but yields a less
compact expression.)

The contribution coming from|T(QB)
13 |

2 is evidently the
smallest term of the three terms on the rhs of Eq. (D9). If
we want to compare the rate that does not affect the spin of
the qubit level in dot 2 (which we callΓVB) with the largest
of the rates that does affect the spin of the qubit level in dot 2
(which we callΓQB), we can estimate

ΓVB

ΓQB
=

|T(VB)
13 |

2

|2 Re [(T(QB)
13 )∗T(VB)

13 ]|
≈ L

W
ln(4∆/Egap). (D13)

The latter result is Eq. (9). It shows that by increasing the
aspect ratioL/W we can increase the weight of the coupling
via the valence band states of dot 2 (which is wanted) as com-
pared to the weight of the coupling via the qubit state of dot 2
(which is unwanted).

APPENDIX E: DECOHERENCE

Finally, we give some arguments and rough estimates for
the spin decoherence in graphene. It is generally believed that
spin-orbit effects are weaker in carbon than in GaAs due to the
lower atomic weight. Therefore, the dominating mechanism
for decoherence will be the hyperfine coupling to the nuclear
spins that are present in the material.

The coherence time given by the hyperfine coupling can be
estimated as [12]t ≈

√
N/cA−1, whereN is the number of

atoms in the dot (for a typical graphene dot,N ≈ 104), cN
is the number of atoms per dot with a nuclear spin, andA
the coupling constant of the hyperfine interaction. Since we
mainly deal withπ orbitals in graphene, the contact hyperfine
interaction is strongly reduced and the hyperfine interaction is
dominated by its dipolar part. From the best available calcu-
lations for the dipolar hyperfine matrix elements [32, 33], one
obtains

Adip =
8
5
µ0

4π
µBµ

〈

1
r3

〉

≈ 0.38µeV, (E1)

whereµ is the nuclear magneton of13C, µB is the Bohr mag-
neton, andµ0 the vacuum dielectric constant. This estimated
value forAdip is smaller thanAGaAs ≈ 90µeV by more than
two orders of magnitude. The natural abundance of13C is
aboutc ≈ 1% which yields, with the values quoted above, a
coherence time of approximatelyt ≈ 10µs, about a thousand
times longer than in GaAs. Unlike in GaAs, this value can be
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improved by isotopic purification. Reducing the13C content
by a factor of about 100 already decreases the average num-
ber of nuclear spins per dot to about one. This allows for a

preselection of the dots without any nuclear spin to be used as
qubits.
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