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Abstract

The creation, coherent manipulation, and measurement of spins in hanostructures open up completely new possi-
bilities for electronics and information processing, among them quantum computing and quantum communication.
We review our theoretical proposal for using electron spins in quantum dots as quantum bits, explaining why this
scheme satisfies all the essential requirements for quantum computing. We include a discussion of the recent mea-
surements of surprisingly long spin coherence times in semiconductors. Quantum gate mechanisms in laterally
and vertically tunnel-coupled quantum dots and methods for single-spin measurements are introduced. We discuss
detection and transport of electronic EPR pairs in normal and superconducting systems.

1. Introduction on single qubits need to be implemented, and at the
end of a computation, the qubits have to be read out by
A computer that processes quantum states instead ofperforming a quantum measurement. Finally, the
conventional classical information is capable of effi- design of the quantum computer should be scalable to
ciently solving some problems for which there is a large number of qubits.
no efficient classical algorithm [1,2]. Efficiency in On one hand, systems involving trapped atoms [6],
this context means that the required computational cavity QED [7], or nuclear magnetic resonance [8]
resources (time, memory) scale polynomially with the seem to satisfy all but the scaling requirement from
size of the problem (input data). The memory of such above, and small-scale quantum gate operations with
a quantum computer is usually represented as a col-these systems have indeed been demonstrated in exper-
lection of quantum two-level systems, named quan- iment. On the other hand, the rapid upscaling of
tum bits, or qubits. The reason why we do not have conventional integrated circuits using semiconductor
working quantum computers yet is that it is very nanotechnology suggests thata similar upscaling might
hard to find a suitable physical realization of qubits, be possible for a solid-state qubit. Several solid-state
because the requirements [3,4] for their implementa- implementations for quantum computing have been
tion are extremely demanding. Quantum phase coher-proposed [9-14]. In this paper, we focus on the idea of
ence needs to be maintained over a long time comparedusing electron spins in coupled semiconductor quan-
to the length of an elementary step in the computation, tum dots as the qubits of a quantum computer [9], and
in order to allow for quantum error correction [5]. As give an overview of the theoretical work that we have
a further requirement, it has to be possible to couple carried outinthisarea. In[9]we have introduced acom-
pairs of qubits in a controlled manner in order to carry plete concept of a spin-based quantum computer which
out elementary quantum logic. Moreover, operations has served as a guideline for a number of subsequent
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proposals. We devote one section to the discussion of cosine describes the coherent precession of the spins
each of the remaining four requirements in the con- about the external fiel@ (with ©g the Bohr magneton
text of quantum dots, viz. coherent qubit, controlled andg the effectiveg-factor of the semiconductor), and
coupling, single-spin operations, and measurement. the exponential represents the loss of coherence on a
We then turn to a discussion of quantum communica- time scaleT,;’. The magnetization (¢) (and thusTy)
tion in terms of electronic Einstein—Podolsky—Rosen can be mapped out by probing the spin magnetization
(EPR) pairs. We show that such EPR pairs can be trans-of the semiconductor after a delayranging from a
ported and detected in transport and noise measure-few ps to ns. Here, one makes use of the so-called Fara-
ments in electronic nanostructures. day rotation: the polarization of a linearly polarized
In what follows, quantum dots in semiconductors laser pulse arriving at the sample at times rotated
play an important role and thus some general remarks by an angle which is proportional 4 (¢). This pump-
about these systems are in order. Semiconductor quan{robe procedure is then repeated for an entire series
tum dots are structures in which charge carriers are of delay timeg, finally revealing the spin precession
confined in all three dimensions, their size being of M(r) and the decoherence tin%". Using the same
the order of the Fermi wavelength in the host mate- method, spin lifetimes in semiconductor quantum dots
rial, typically between 10 nm anddm [15]. The con- have been measured [22]. The relatively siiala few
finement is usually achieved by electrical gating of ns at zero field) which have been seen in these experi-
a two-dimensional electron gas (2DEG), sometimes ments probably originate from a large inhomogeneous
combined with the application of etching techniques. broadening due to a strong variatiorgafactors. Thus,
Precise control of the number of electrons occupying the fact that many coherent oscillations were observed
a quantum dot (starting from zero) has been achieved in these recent spin measurements by the Awschalom
in GaAs heterostructures [16]. The electronic spec- group provides strong experimental support to the idea
trum of typical quantum dots can vary strongly when to use electron spin as qubits.
an external magnetic field is applied [15-17], since
the magnetic length corresponding to typical labora-
tory fields 8 ~ 1T) is comparable to typical dot 3. Quantum gate operations with
sizes. In coupled quantum dots, Coulomb blockade  coupled guantum dots
effects [18] and magnetization [19] have been observed
as well as the formation of a delocalized ‘molecular In addition to phase-coherent qubits, we are also inter-
state’ [20]. ested in a mechanism that couples pairs of qubits. For
electron spins in coupled quantum dots, the required
mechanism is provided by the combined action of the
Coulomb interaction and the Pauli exclusion principle.
) _ At zero magnetic field, the ground state of two cou-
Recent magneto-optical experiments have Shown sur- o 4 electrons is a spin singlet, whereas the first excited

prisingly long spin coherence times in doped GaAs gt in the presence of strong Coulomb repulsion is
bulk semiconductors [21]. At zero field afd= 5K, usually a triplet. The remaining spectrum is separated
the transverse spin lifetime (coherence timfg)can 4 these two states by a gap which is either defined
exceed 100 ns. Since this number still includes inho- by the Coulomb repulsion or the single particle con-

mogeneous broadening, e.g. dugtactor variations  finement. The low-energy physics of such a system can

in the material, it represents only a lower bound onthe yhe pe described by the Heisenberg spin Hamiltonian
transverse lifetime of ainglespin, 7, > T, which is

relevant for using spins as qubits. H()=J(1)S,-S, (1)
In [21] the spin coherence time was measured using

time-resolved Faraday rotation. This method involves whereJ (¢) is the exchange coupling between the two
optically generating (pumping) a spin polarization per- spinsS; and S,, i.e. the energy difference between
pendicular to the externally applied field using circu- the singlet and triplet states. If the exchange cou-
larly polarized light (propagating perpendicularly to pling is pulsed such thaf dt J(t1)/h = Jot,/h =

the applied field). The time-dependent magnetization = (mod 2r), the associated unitary time evolution
of the electrons precessing in the external field is then U(r) = T exp(i fo' H(t)dt/h) corresponds to the
M(t) = M(0) cos(gugBt/h) exp(—t/T,), where the ‘swap’ operator Uy, which simply exchanges the

2. Spin coherence in semiconductors
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guantum states of qubit 1 and 2 [9]. Furthermore, This choice for the potential is motivated by the exper-
the quantum XOR can be obtained by applying the imental fact [16] that the low-energy spectrum of sin-

sequence [9] gle dots is well described by a parabolic confinement
) ) ) potential. The (bare) Coulomb interaction between
Uxor = €' "P%1e7 " M2% U2 ™10, 2) the two electrons is described Ity wherex denotes

the dielectric constant of the semiconductor. The
i.e. a combination of ‘square-root of swap’~/? and screening length in almost depleted regions like few-
single-qubit rotations expr S;). Since Uxor (COM- electron quantum dots can be expected to be much
bined with single-qubit rotations) is proven to be a larger than the bulk 2DEG screening length (which is
universal quantum gate [23], it can be used to assem-about 40 nm in GaAs). Thereforgjs large compared
ble any quantum algorithm. The study of universal to the size of the coupled system;» 2a ~ 40 nm for
quantum computation in coupled quantum dots is small dots, and we will consider the limit of unscreened
thus essentially reduced to the study of txehange  Coulomb interactionX/a > 1).
mechanisrmand how the exchange coupling) can At sufficiently low temperaturesT < hw, we are
be controlled experimentally. Note that the switch- allowed to restrict our analysis to the two lowest orbital
able coupling mechanism described below need not eigenstates ofd,,,, one of which is symmetric (spin
be restricted to quantum dots: the same principle can singlet) and the other one antisymmetric (spin triplet).
be applied to other systems, e.g. coupled atoms in aln this reduced (four-dimensional) Hilbert spaég,,
Bravais lattice, supramolecular structures, or overlap- can be replaced by the effective Heisenberg spin Hamil-
ping shallow donors in semiconductors. tonian Eq. (1), the exchange enerdy = ¢ — €
being the difference between the triplet and singlet
energy. Rather than solving this model in an ana-
3.1. Laterally coupled quantum dots lytically closed form, we make use of the analogy
between atoms and quantum dots (artificial atoms),
We first consider a system of two laterally coupled providing us with a powerful set of variational meth-
quantum dots containing one (conduction band) elec- ods from molecular physics for calculating and

tron each [24]. It is essential that the electrons are ¢ Using the Heitler—London approximation we find
allowed to tunnel between the dots, introducing correla- [24],

tions between the spins via the charge (orbital) degrees
of freedom. We model the coupled system with the

HamiltonianH = Y_,_, ,h; + C + H; = How, + Hz, hawg 3 )
i=1, J= 2 (1+bd b
where sinh(2d2(2b — 1/b)) | 4b (1+bd%) +evb
1 e 2 —pd? 2 d2(b—1/b) 2 ]
N N . lo(bd?) — lo(d?(b — 1/b))) |,
h= 5= (p = SAG)) + V. x (e 1o(bd?) = 01 (b — 1/b)) )
e (4)
C=— 3
K|y —ry ®)

where we introduce the dimensionless distadce
Here,h; describes the single-electron dynamics in the a/agz and the magnetic compression factbr =
2DEG confined to thecy-plane, withm being the B/By, = /1+ w}/w;, wherew, = eB/2mc is the
electron band mass. We allow for a magnetic field Larmor frequency. The zeroth order Bessel function
B = (0,0, B) applied along thez-axis and which is denoted by . The terms in Eq. (4) proportional
couples to the electron charge via the vector poten- to the parameter = /7/2(e?/kag)/hw, are due to
tial A(r) = B/2(—y,x,0), and to the spin via a the Coulomb interactiod’, where the exchange term
Zeeman coupling tern#;. The coupling of the dots  enters with aminus sign. The firsttermin Eq. (4) comes
(which includes tunneling) is modeled by a quartic from the confinement potential. Note that typically

potential,V (x, y) = maj ((x? — a®)?/(4d®) + y?) /2, |J /hwo| < 1, making the exclusive use of ground-state
which separates into two harmonic wells of frequency single-dot orbitals in the Heitler—London ansatz a self-
wy, one for each dot, in the limit@>>> 2ag, wherea is consistent procedure. The exchanbés plotted as a

half the distance between the centers of the dots, andfunction of B andd in Figure 1. We observe thdt> 0
ag = /h/mw, is the effective Bohr radius of a dot. for B = 0, which must be the case for a two-particle
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Figure 1L The exchange coupling (full line) for GaAs quantum dots with confinemént = 3 meV andc = 2.42. For comparison we
plot the usual short-range Hubbard resul: 4:%/ U (dashed—dotted line) and the extended Hubbard result[24}Y:2/U + V. In (a),

J is plotted as a function of the magnetic figddat fixed inter-dot distance!(= a/ag = 0.7), and in (b) as a function of the inter-dot
distanced = a/ag at zero field g = 0).

systemthatistime-reversal invariant. The mostremark- 3.2. Vertically coupled quantum dots
able feature of/(B), however, is the change of sign
from positive to negative, which occurs at some finite Motivated by the experimental progress in the fabri-

B over a wide range of parameteranda. The transi-
tion from antiferromagneticA > 0) to ferromagnetic
(J < 0) spin—spin coupling with increasing magnetic

cation of both multilayer self-assembled quantum dots
(SAD) [27] as well as etched mesa heterostructures
[28], both with vertical coupling, we have investigated

field is caused by the long-range Coulomb interaction, the exchange coupling in vertically tunnel-coupled
in particular by the negative exchange term. Large mag- quantum dots [29]. The same methods as for laterally
netic fields f > 1) compress the electron orbitals and coupled quantum dots were used. However, the two-
thereby lead to the exponential decreasé cbntained dimensional Hamiltonian Eq. (3) had to be replaced by
in the 1/ sinh prefactor in Eq. (4). Similarly, the orbital  a three-dimensional one, taking into account the con-
overlap between the two dots (and thuiy decays finementV = V|, + V, in all three dimensions. The
exponentially foe > 1. Note, however, thatthisexpo- vertical confinemen¥, is assumed to have the form
nential suppression is partly compensated by the expo-of a double-well, as for the lateral confinement in the
nentially growing exchange tersa exp(2d%(b—1/b)). two-dimensional case with curvatueg atz = +a,
As aresult,J decays exponentially as exp2d42b) for as shown in Figure 2(b). Here, the lateral confinement
largeb or d. Thus,J can be tuned through zero and potentialV; is a simple harmonic well. We have, how-
then exponentially suppressed to zero by a magnetic ever, included the possibility that the two quantum dots
field in a very efficient way (exponential switching is have different lateral sizeg;,. = /h/mog. 0., lead-
highly desirable to minimize gate errors). This sign ing to interesting new effects when external fields are
reversal of/ is due to the long-range Coulomb forces applied (see below). As a consequence of being three-
and is not contained in the standard Hubbard approxi- dimensional, the exchange interaction in vertically
mation which takes only short-range interactions into coupled quantum dots is sensitive to magnetic and elec-
account, and where one finds= 4t2/U > 0 in the tric fields in different directions. Here, we summarize
limit /U « 1 (see Figure 1). By working around the our results [29] for in-plane]|) and perpendicularl()
magnetic field wherd vanishes the exchange interac- fields (see Figure 2(a)): (1) An in-plane magnetic field
tion can be pulsed on, even without changing the tun- has essentially the same effect as a perpendicular field
neling barrier between the dots, by an application of a in laterally coupled dots; it suppresses the exchahge
local magnetic field. exponentially. (2) Perpendicular magnetic fields reduce
Qualitatively similar results are obtained [24] when the exchange coupling between identical dots only very
we refine above Heitler—London result by taking into weakly. However, if two dots of different sizes are cou-
account higher levels and double occupancy of the dots pled, then we expect a non-monotonic behaviaf af
(requiring a molecular orbit approach). Finally, we note a function ofB. IncreasingB from zero, the exchange
that a spin coupling can also be achieved on a long first increases untiB = 2mcw,ao, /e, when both elec-
distance scale by using a cavity-QED scheme [25] or tronic orbitals are magnetically compressed to approx-
superconducting leads to which the quantum dots are imately the same size; thed, decreases weakly, as
attached [26]. in the case of identical dots. (3) Perpendicular electric
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Figure 2 (a) Sketch of the vertically coupled double quantum-dot system. The two dots may have different lateral diagedexs,
ag_. We consider magnetic and electric fields applied either in-pl@yeK,) or perpendicularly 8,, E,). (b) The model potential
for the vertical confinement is a double-well, which is obtained by combining two harmonic wells with frequeaty = +a. (c)
Switching of the spin—spin coupling between dots of different size by means of an in-plane electrig, fl@d= 0). The exchange
coupling is switched ‘on’ aE = 0 (see text). We have chosétw. = 7meV,d = 1, ap, = 1/2 anda,_. = 1/4. For these parameters,
Ey = hw,/eag = 0.56mV/nm andA = (¢f, — af_)/2a3, o} = 6. The exchange coupling decreases exponentially on the scale
Eo/2A = 47 mV/um for the electric field.

fields simply detune the single-dot levels, therefore  Due to spin-orbit coupling, the Lagdg-factor in
reducing the exchange coupling. This effect can also bulk semiconductor materials differs from the free-
be found for laterally coupled dots. (4) In-plane elec- electron valug, = 2.0023 and ranges from large neg-
tric fields E, have a very interesting effect for coupled ative to large positive numbers for various materials. In
dots of different size, see Figure 2(c). The larger of the confined structures such as quantum wells, wires, and
two dots is shifted byAx_, whereas the smaller dot dots, theg-factor is modified with respect to the bulk

is shifted byAx, < Ax_, whereAx, = E;/EqxZ, material and sensitive to an external bias voltage [30].
and E, = hw,/eas. Therefore, the mean distance We have studied the simpler case of a layered structure
between the electrons in the two dots grows/as- in which the effectiveg-factor of electrons is varied
JVd? + A%(E|/Eo)?, whereA = (a2, — a3 )/2ad, of . by electrically shifting their equilibrium position from

The exchange coupling, Eq. (4), being exponentially  one layer (withg-factor g;) to another (with another
sensitive to the inter-dot distane®, decreases thus g-factor g, # gi). For simplicity, we use the bulk

exponentially,/ ~ $? ~ exp[-2A%(E,/Ey)?]. With g-factors of the layer materials, an approximation
this effect we have found another exponential switch- which becomes increasingly inaccurate as the layers
ing mechanism for quantum gate operation. become thinner [31].

We consider a quantum well (e.g. AlGaAs—GaAs—

AlGaAs), in which some fractiory of the Ga atoms

are replaced by In atoms in the upper half of the het-
4. Single-spin rotations erostructure (we have used= 0.1). The sequence

of layers in the heterostructure is then ,Gal As—
The theoretical requirement for the single-spin rota- GaAs-Ga ,In,As—Ga_,Al As, wherex denotes the
tions for a spin-1/2 qubit is the following: it must Al content in the barriers (typically around 30%).
be possible to subject a specified qubit to a (real or Changing the vertical position of the electrons in the
effective) magnetic field of specified direction and quantum well via top or back gates permits control of
strength. We have presented various ideas of how tothe effectiveg-factor for the corresponding electrons.
achieve this previously [9,24]: by the application of If the electron is mostly in a pure GaAs environment,
real, localized magnetic fields using a scanned mag- then its effectiveg-factor will be around the GaAs
netic particle or nanoscale electric currents; using a bulk value ggans = —0.44) whereas if the electron is
magnetized dot or magnetized barrier material that the in the InGaAs region, theg-factor will be somewhere
electron can be inserted in and out of by electric gat- between the GaAs and the InAs valuggs, = —15).
ing; or by the use of-factor-modulated materials [3,4]. We have numerically analyzed the one-dimensional
We would like to sketch the analysis of the last idea problem of a single electron in such a structure (screen-
here. ing effects are neglected since we are interested in
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isolated electrons located in quantum dots),

+ V(z)} V(z) = EV(2), %)

[ d n®

dz 2m(z) dz
with a spatially varying effective mass(z) by dis-
cretizing it in real space and subsequently performing
exact diagonalization [4]. The potenti@lz) describes
the quantum well (conduction band offsAtE.
270meV) and the electric fiel& in growth direc-
tion. For the effective masses apdactors of the var-
ious layers we have linearly interpolated between the
GaAs, AlAs, and InAs values. The resulting effec-
tive g-factor was calculated by averaging thdactor
over the electronic ground-state wavefunctigg, =
[dzg(@)|¥(z)|>. We find that at moderate electric
fields, g interpolates roughly between the GaAs and
Ga,_,In,As g-factors. If the electric energyEwg =
eUg becomes larger than the barrig,, we observe
a vertical deconfinement of the electrons. The elec-
tric field required for a substantial change gg; is
of the order of 10 mynm, corresponding to a volt-
age of 100 mV, which is about one order of magni-
tude smaller than the band gapg&V for GaAs at
T = 0). Since for the above materials and parame-

field or inhomogeneoug-factors) we can perform the
switching also by ESR methods [24], where we applyin
addition a homogeneous but time-dependent figld
with an oscillation frequency that matches the Zeeman
splitting energy of the particular qubit one wants to
address.

5. Single-spin measurements

Measurements of the Faraday rotation (cf. Section 2)
originating from a single pair of coupled electrons
would allow us to distinguish between spin singlet and
triplet [29]. If the system is in the singlet statg £ 0,
no magnetic moment) there is no Faraday rotation,
whereas in the triplet states (= 1) the polarization
of linearly polarized light is rotated slightly due to the
presence of a finite magnetic moment. Such individ-
ual singlet and triplet states in a double dot can also be
detected (through their charge) in transport measure-
ments via Aharonov—Bohm oscillations in the cotun-
neling current and/or current correlations [3,32,33]
(see below).

Above schemes even allow the measurement of a
single spin }¥2, provided that it is possible to per-

ters the Zeeman energy is about 100 times smaller thanform one two-qubit gate operation (see Section 3) and

the typical kinetic energy, we find no noticeable devia-
tion from the linear relatiod\ E(B) =~ gesug B Which
might arise due to the Zeeman coupling.

The described quantum well can host an array of
electrostatically defined quantum dots, containing a

a subsequent single-qubit gate (see Section 4). Explic-
itly, such a single-spin measurement of the electron
is performed as follows [29]. We are given an arbi-
trary spin Y2 state|a) in quantum dot 1. For sim-
plicity, we assume thatr) is one of the basis states,

single excess electron (and thus a single spin 1/2) each.|a) = |1) or |a) = || ); the generalization to a super-

In order to carry out a single-qubit operation on one of

the spins, the whole system is placed into a homoge-

neous magnetic field. By changing the voltage at the
electric gate on top of a single quantum dot, the effec-
tive g-factor g.¢ for the spin in this quantum dot can
be changed by aboutg.« ~ 1 with respect to theg-
factor of all remaining spins. This leads to a relative
rotation about the direction & by an angle of roughly

¢ = AgerugBT/2R. The typical switching time for

a¢ = m/2 rotation using a field of 1 T is then approx-
imately t ~ 2¢h/Agesus B ~ 30 ps. Controlling the
top gate at ! ~ 30 GHz seems very challenging; we

position of the basis states is straightforward. The spin
in quantum dot 2 is prepared in the state. Then,
a U3? gate is performed (cf. Section 3). In the case
) = |1), nothing happens, i.e. the spins remain in
the state|11), whereas ifle) = || ), we obtain the
entangled statg 1) +i|1))/+/2 (up to a phase fac-
tor which can be ignored). Finally, we apply a local
Zeeman termgug BS?, acting parallel to the-axis at
quantum dot 1 during the time interval, such that
0’3 (gusB)(t) dt = /2. The resulting state is (again
up to unimportant phase factors) the triplet stat¢)
inthe case whergr) = |1), whereas we obtain the sin-

emphasize however that the single-qubit operation can glet state(|1]) — |1))/+/2 in the caséa) = ||). In

be done much more slowly (alower limitis provided by

otherwords, such a procedure maps the triplés into

the spin dephasing time). The switching can be slowed itself and the statg| 1) into the singlet (similarly, the

down either by choosing a smallevg.; or by replac-
ing ¢ by ¢ + 27 n wheren is an integer. Once we have
the possibility to generate different Zeeman splittings

same gate operations map| ) into itself, while|1])
is mapped into the triplat1 ) + |11))/~/2, again up
to phase factors). Finally, measuring the total magnetic

for each qubit (either by an inhomogeneous magnetic moment of the double dot system then reveals which
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of the two spin states in dot 11) or || ), was realized
initially. Note that it is also possible thatsinglespin
1/2 will be directly measured via Faraday rotation, or res e  —
by making use of spin-selective tunneling devices with |
subsequent charge detection [9].

k9 | 2
[
6. Quantum communication with electrons: | :

detection of entanglement [3,32,33,45]

I

..... / r\
The availability of pairwise entangled qubits — EPR 3 I 4
pairs [35] —is anecessary prerequisite in quantum com- B spliller
muni.cation [34]. .The pr_ime example of an EPR pair Figure 3 Uncorrelated electrons are fed into the entangler
ConS|d¢red_ here '_S the singlet _Stat_e formed by_two elec- through the Fermi leads &nd 2. The entangler is a device (see
tron spins, its main feature being its non-locality. If We eyt that produces pairs of electrons in the entangled spin singlet
separate the two electrons in real space, their total spinor one of the spin triplets and injects one of the electrons into lead
state can still remain entangled. Such non-locality gives 1 and the other into lead 2. In the outgoing leads, for singlets we
rise to striking phenomena such as violations of Bell get bunching due to their orbital symmetry, whereas for triplets
inequalities and quantum teleportation and has beenWe get antibunching due to their orbital antisymmetry.
investigated for photons [36,37], but not yet foas-
siveparticles such as electrons, let alone in a solid-state
environment. This is so because it is difficult to first symmetry of only therbital part of the wave function.
produce and to second detect entanglement of electronsOn the other hand, since the spin singlet of two elec-
in a controlled way. In this section we describe several trons is uniquely associated with a symmetric orbital
experimental setups by which the entanglement of elec- wave-function, and the three triplets with an antisym-
trons (once produced as e.g. described in the previousmetric one we have thus a means to distinguish sin-
section) can be detected via their charge in transport glets from triplets through a bunching or antibunching

and noise measurements [26,32,33]. signature. Below we verify this expectation explicitly,
by extending the standard scattering matrix approach
6.1. Bunching and antibunching of EPR pairs [40,41] to a situation with entanglement.

The operator for the current carried by electrons with

We consider the setup shown in Figure 3. Here, the sp?na in leada of a multiterminal conductor can be
entangler is assumed to be a device by which we can Written as [32,40]
generate (or detect) entangled electron states, a spe-
cific realization being the double-dot system discussed L.(t) = € Z[a‘r (E)ay, (E))
in previous sections. The presence of a beam splitter *
ensures that the electrons leaving the entangler have
a finite amplitude to be interchanged (with or without
mutual interaction). The quantity of interest is then the
current—current correlations (noise) measured in leadswherea! (E) creates an incoming electron in lead
3 and/or 4. with spino and energyE, and the operators,, for

It is well-known [38] that particles with symmet- the outgoing electrons are related to the operatgrs
ric wave functions show bunching behavior [39] inthe for the incident electrons via the scattering matrix,
noise, whereas particles with antisymmetric wave func- s.s, by, (E) = Zﬁ Sesass (E). We will assume that
tions show antibunching behavior. The latter situation the scattering matrix is spin- and energy-independent.
is the one considered so far for electrons in the normal Note that since we are dealing with discrete energy
state both in theory [40,41] and in experiments [42]. states here, we normalize the operat@;s(E) such
However, since the noise is produced by the charge that{a,, (E), ag, (E')'} = 8,0/84485 7/v, Wheresy p
degrees of freedom we can expect [3] that in the absenceis the Kronecker symbol, andhe density of states. We
of spin scattering processes the noise is sensitive to theassume that each lead consists of only a single quantum

E,E'

— b} (E)b,, (E)]e! &1 (6)
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channel. We then obtain
_ i T o N i(E—ENt/h
Lo (1) = - Z ;aﬁ(,(E)Aﬂyaw(E )e :
A;y = Saﬁauy - (7)
We restrict ourselves here to unpolarized curreitss
> L. The spectral density of the current fluctuations

(noise)sl, = I, — (I,) between the leads andj are
defined as

x
SupSay-

Ses(@) = lim h%/ dt ¢ (W|81,(1)81,(0)|W),
T—o0 0
(8)

where the stateV) is some arbitrary state to be spec-
ified below. Inserting the expression for the currents
Eq. (7) into this definition, we obtain for the zero fre-

quency correlations

2
e
Sup=— » A% AL
B hvﬂze( ysi et
1 T ’ ’
x > [(wla!,(E)as, (E)al, (E)ac, (E)|W)

E,E' oo’

—(Wla}, (E)as, (E)|W)(Vla], (Eac (E)|W)].

9)

We note that sincé¥) in general does not describe a
Fermi liquid state, it is not possible to apply Wick's
theorem.

6.2. Noise for entangled states

We will now investigate the noise correlations for scat-
tering with the entangled incident stat@) = |+),
where

|+) = iz (all(ez)aL(el) + a;(fz)aL(Gi)) |0).

The statg—) is the spin singlet,S), while |+) denotes
one of the spin triplet§T; . ); in the following we will
present a calculation of the noise faf) = |Tp), i.e.
the triplet withm, = 0.

Using |£) for |W), we get(+|81,84|E£) = (1]
81,8110 )£ (1I81,815]1 1), where the upper (lower)
sign of the exchange term refers to triplet (singlet).
After some straightforward manipulations, we obtain
the following result for the correlations between the
leadsx andg,

@2 ’
Sap = ﬁ |:Z AjsAfy + 6‘lv€2 (AizAgl + AglAfz):| )

y8

where ), denotes the sum over = 1, 2 and all
8 # y, and where again the upper (lower) sign refers
to triplets (singlets).

We apply above formula now to the set-up shown in
Figure 3 involving four leads, described by the scatter-
ing matrix elementssgs; = 54, = r, andsy; = 53, = ¢,
wherer and¢ denote the reflection and transmission
amplitudes at the beam splitter, respectively, and with
no backscattering,, = s34 = s,, = 0. The unitarity
of thes-matrix implies|r|*+|¢|? = 1, and Ref*t] = 0.
Using above relations, we obtain finally

2

e
S33 = Sas = —S33 = Zh_vT(l —T)AF b,
(10)

whereT = [t|? is the probability for transmission
through the beam splitter. The calculation for the
remaining two triplet states-) = |7.) = | 1), | {{)
yields the same result Eq. (10) (upper sign). Note that
the total currentsl; + 81, does note fluctuate, i.e.
Saz+ Saa+ 253, = 0, since we have excluded backscat-
tering. For the average current in leadwe obtain
[{I,)| = e/ hv, with no difference between singlets and
triplets. Then, the Fano factér = S,,/ |(1,)| takes the
following form:

F=2eTA—T)LF 8., (11)

and correspondingly for the cross correlations. This
result confirms our expectation stated in the introduc-
tion: if two electrons with the same energies= ¢,

in the singlet statgS) = |—) are injected into the leads

1 and 2, then the zero frequency noisetidhancedy

a factor of two,F = 4eT(1 — T), compared to the
shot noise of uncorrelated particlds,= 2¢T(1—T).

This enhancement of noise is dugianchingof elec-
trons in the outgoing leads, caused by the symmetric
orbital wavefunction of the spin singléf). On the
other hand, the triplet statés-) = |Tp.) exhibit an
antibunchingeffect, leading to a complete suppression
of the zero-frequency noise in Eqg. (168), = 0. The
noise enhancement for the sing|§j is a unique sig-
nature for entanglement (there exists no unentangled
state with the same symmetry), therefore entanglement
can be observed by measuring the noise power of a
mesoscopic conductor. The triplets can be further dis-
tinguished from each other if we can measure the spin
of the two electrons in the outgoing leads, or if we

*For finite frequencies, we obtain the noise powgr(w) =
€/ h)[(1—=8,,0) + T (1= T) (28,0 F Suy(eg—ep/i) F Sugteq—eqyil-



insert spin-selective tunneling devices [43] into leads
3, 4 which would filter a certain spin polarization.
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we can consider the situation whetg, = —Ap,,
and thus there is no charge current through the conduc-

We emphasize that above results remain unchangedtor, I, = 0. Still, there is a non-vanishing spin current

if we consider stategt) which are created above a
Fermi sea. We have shown [3] that the entanglement of

Is= (I,) — (1,), and according to the above result one
can observe the current noiSe= ¢(1—T)| /| induced

two electrons propagating in a Fermi sea gets reducedby spin transport only.

by the quasiparticle weight (for each lead one fac-
tor) due to the presence of interacting electrons. In
the metallic regimez: assumes typically some finite

6.4. Spin-dependent current through a double-dot
[33]

valu€, and thus as long as spin scattering processes are

small the above description for non-interacting elec-
trons remains valid.

6.3. Noise induced by spin currents [32,45,46]

In this subsection we discuss the current noise induced
by the spin transport in a two-terminal conductor
attached to Fermi leads with spin-dependent chemical
potentialsu, . It is clear that for a stationary situation

a spin reservoir (at chemical potentjal) is needed.

In particular, it is not sufficient to just apply a mag-
netic field gradient along the sample to create a station-
ary spin current, since an inhomogeneous field simply
leads to an inhomogeneous magnetization build-up and
after some short relaxation time an initial spin cur-
rent vanishes again. To avoid such a saturation of the
spin current one could make use of an oscillating (in
time) magnetic field gradient, with a frequency which
is larger than the spin relaxation frequency but still
small enough so that the zero-frequency limit consid-

We turn now to a further scenario where entanglement
can be measured in the current [33]. A double-dot sys-
tem which is weakly coupled to an ingoing (1) and an
outgoing (2) lead held at chemical potentials;,, but
where now an electron coming from lead 1(2) has the
option to tunnel intdoothdots 1 and 2 with amplitude

I". In contrast to previous studies the double-dot is put
in parallel instead of in series between the two leads.
This results in a closed loop, and applying a magnetic
field, an Aharonov—Bohm phase will be acquired

by an electron traversing the double-dot. Note that the
double-dot (containing two entangled electrons with
the singlet being their ground state) can be viewed as
an artificial H, molecule (this should be carefully dis-
tinguished from the singlet in a single dot like an He-
atom, which cannot be used for the present purpose
because the two electrons are not separated in space). In
the Coulomb blockade regime where the electron num-
ber on the dots is quantized and kept fixed we find that
due to cotunneling the current traversing the double-
dot becomes

ered above remains applicable. For the present purpose

we simply assume that it is possible to induce a spin-
dependent chemical potential difference leading to a
stationary spin current (but not necessarily to a charge
current). From Eq. (7) we immediately obtaih) =
e/hT Apu,, where we have introduced the difference of
chemical potentiald u, = i, — 2, for each spin ori-
entationo. Then, applying Wick’s theorem to Eq. (9)
we obtain the noise powsr= e¢?/ hT (1—T)(|Aps|+
|Ap,]). Thus, the contribution of two spin subsystems
to the noise is independent, as it should be if there is
no spin interaction. Therefore, we can rewrite above
expression as = e(1 — T)([{L;)| + I{I})]). In par-
ticular, whenAp, = Ap, we obtain the usual result
[45] S = e(1 — T)|I| for the shot noise induced by
the charge currentt = (1,) + (1,). On the other hand,

'For instance, in metals such as bulk Cu the quasiparticle weight
becomes within RPA approximatiaa = 0.77, while for a GaAs
2DEG we find [3] (also within RPA}r = 1 — r,(1/2+ 1/7r) =
0.66 for the GaAs interaction parameter= 0.61.

u (2 + COSQD) ,

K12
where the upper (lower) sign refers to triplet (sin-
glet) state in the double-dot. This result is valid for
U > |1 > J > ksT, 2 vI'?, with U the single-
dot charging energy, the lead density of states, aid
the tunneling amplitude between dots and leads. When
calculating the zero-frequency noise [38jw = 0)
we find that the noise assumes its Poissonian value,
S(0) = —e|I] and no new information is gained. More-
over, when we calculate the finite frequency noise,
S(w), we no longer find a Poissonian behavior, but
still we haveS(w) o« (2 &+ cosg). Thus,the current
and noise reveal via the sign of the AB oscillations
whether the double-dot is in a singlet or triplet state
The triplets can be further distinguished by applying
spatially inhomogeneous magnetic fields leading to a
beating of the AB phase oscillation due to the Berry
phase [33].

I = emv?1* (12)



410

6.5. Spin-dependent Josephson current through and it is a fortunate situation that the study of quan-
double dots [26] tum spin effects has promising applications not only
for quantum computing and quantum communication
Finally we discuss a scenario, S-DD-S, with a dou- but also for ordinary computer hardware (such as non-
ble dot each dot of which is tunnel-coupled to super- volatile memories). We have discussed theoretical pro-
conducting leads [26]. These superconductors not only posals how spins (qubits) can be manipulated via their
induce spin correlations between the two spins on the charge degrees of freedom to achieve single-qubit and
dots but also allow us to detect these correlations via the two-qubit gate operations, and how they can be trans-
supercurrent traversing the dots. In particular, it turns ported in entangled EPR states which are needed for
out that this connection via a superconductor induces a Bell measurements and eventually for quantum com-
Heisenberg exchange coupling between the two spinsmunication purposes.
on the double dot, with an effective Hamiltonian,

Heg ~ J(1+c0s¢) [S,-S—3]. (13)
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