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Abstract

The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possi-
bilities for electronics and information processing, among them quantum computing and quantum communication.
We review our theoretical proposal for using electron spins in quantum dots as quantum bits, explaining why this
scheme satisfies all the essential requirements for quantum computing. We include a discussion of the recent mea-
surements of surprisingly long spin coherence times in semiconductors. Quantum gate mechanisms in laterally
and vertically tunnel-coupled quantum dots and methods for single-spin measurements are introduced. We discuss
detection and transport of electronic EPR pairs in normal and superconducting systems.

1. Introduction

A computer that processes quantum states instead of
conventional classical information is capable of effi-
ciently solving some problems for which there is
no efficient classical algorithm [1,2]. Efficiency in
this context means that the required computational
resources (time, memory) scale polynomially with the
size of the problem (input data). The memory of such
a quantum computer is usually represented as a col-
lection of quantum two-level systems, named quan-
tum bits, or qubits. The reason why we do not have
working quantum computers yet is that it is very
hard to find a suitable physical realization of qubits,
because the requirements [3,4] for their implementa-
tion are extremely demanding. Quantum phase coher-
ence needs to be maintained over a long time compared
to the length of an elementary step in the computation,
in order to allow for quantum error correction [5]. As
a further requirement, it has to be possible to couple
pairs of qubits in a controlled manner in order to carry
out elementary quantum logic. Moreover, operations

on single qubits need to be implemented, and at the
end of a computation, the qubits have to be read out by
performing a quantum measurement. Finally, the
design of the quantum computer should be scalable to
a large number of qubits.

On one hand, systems involving trapped atoms [6],
cavity QED [7], or nuclear magnetic resonance [8]
seem to satisfy all but the scaling requirement from
above, and small-scale quantum gate operations with
these systems have indeed been demonstrated in exper-
iment. On the other hand, the rapid upscaling of
conventional integrated circuits using semiconductor
nanotechnology suggests that a similar upscaling might
be possible for a solid-state qubit. Several solid-state
implementations for quantum computing have been
proposed [9–14]. In this paper, we focus on the idea of
using electron spins in coupled semiconductor quan-
tum dots as the qubits of a quantum computer [9], and
give an overview of the theoretical work that we have
carried out in this area. In [9] we have introduced a com-
plete concept of a spin-based quantum computer which
has served as a guideline for a number of subsequent
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proposals. We devote one section to the discussion of
each of the remaining four requirements in the con-
text of quantum dots, viz. coherent qubit, controlled
coupling, single-spin operations, and measurement.
We then turn to a discussion of quantum communica-
tion in terms of electronic Einstein–Podolsky–Rosen
(EPR) pairs. We show that such EPR pairs can be trans-
ported and detected in transport and noise measure-
ments in electronic nanostructures.

In what follows, quantum dots in semiconductors
play an important role and thus some general remarks
about these systems are in order. Semiconductor quan-
tum dots are structures in which charge carriers are
confined in all three dimensions, their size being of
the order of the Fermi wavelength in the host mate-
rial, typically between 10 nm and 1µm [15]. The con-
finement is usually achieved by electrical gating of
a two-dimensional electron gas (2DEG), sometimes
combined with the application of etching techniques.
Precise control of the number of electrons occupying
a quantum dot (starting from zero) has been achieved
in GaAs heterostructures [16]. The electronic spec-
trum of typical quantum dots can vary strongly when
an external magnetic field is applied [15–17], since
the magnetic length corresponding to typical labora-
tory fields (B ≈ 1 T) is comparable to typical dot
sizes. In coupled quantum dots, Coulomb blockade
effects [18] and magnetization [19] have been observed
as well as the formation of a delocalized ‘molecular
state’ [20].

2. Spin coherence in semiconductors

Recent magneto-optical experiments have shown sur-
prisingly long spin coherence times in doped GaAs
bulk semiconductors [21]. At zero field andT = 5 K,
the transverse spin lifetime (coherence time)T ∗2 can
exceed 100 ns. Since this number still includes inho-
mogeneous broadening, e.g. due tog-factor variations
in the material, it represents only a lower bound on the
transverse lifetime of asinglespin,T2 ≥ T ∗2 , which is
relevant for using spins as qubits.

In [21] the spin coherence time was measured using
time-resolved Faraday rotation. This method involves
optically generating (pumping) a spin polarization per-
pendicular to the externally applied field using circu-
larly polarized light (propagating perpendicularly to
the applied field). The time-dependent magnetization
of the electrons precessing in the external field is then
M(t) = M(0) cos(gµBBt/h̄) exp(−t/T ∗2 ), where the

cosine describes the coherent precession of the spins
about the external fieldB (with µB the Bohr magneton
andg the effectiveg-factor of the semiconductor), and
the exponential represents the loss of coherence on a
time scaleT ∗2 . The magnetizationM(t) (and thusT ∗2 )
can be mapped out by probing the spin magnetization
of the semiconductor after a delayt , ranging from a
few ps to ns. Here, one makes use of the so-called Fara-
day rotation: the polarization of a linearly polarized
laser pulse arriving at the sample at timet is rotated
by an angle which is proportional toM(t). This pump-
probe procedure is then repeated for an entire series
of delay timest , finally revealing the spin precession
M(t) and the decoherence timeT ∗2 . Using the same
method, spin lifetimes in semiconductor quantum dots
have been measured [22]. The relatively smallT ∗2 (a few
ns at zero field) which have been seen in these experi-
ments probably originate from a large inhomogeneous
broadening due to a strong variation ofg-factors. Thus,
the fact that many coherent oscillations were observed
in these recent spin measurements by the Awschalom
group provides strong experimental support to the idea
to use electron spin as qubits.

3. Quantum gate operations with
coupled quantum dots

In addition to phase-coherent qubits, we are also inter-
ested in a mechanism that couples pairs of qubits. For
electron spins in coupled quantum dots, the required
mechanism is provided by the combined action of the
Coulomb interaction and the Pauli exclusion principle.
At zero magnetic field, the ground state of two cou-
pled electrons is a spin singlet, whereas the first excited
state in the presence of strong Coulomb repulsion is
usually a triplet. The remaining spectrum is separated
from these two states by a gap which is either defined
by the Coulomb repulsion or the single particle con-
finement. The low-energy physics of such a system can
then be described by the Heisenberg spin Hamiltonian

Hs(t) = J (t) S1 · S2, (1)

whereJ (t) is the exchange coupling between the two
spins S1 and S2, i.e. the energy difference between
the singlet and triplet states. If the exchange cou-
pling is pulsed such that

∫
dt J (t)/h̄ = J0τs/h̄ =

π (mod 2π ), the associated unitary time evolution
U(t) = T exp(i

∫ t

0
Hs(τ ) dτ/h̄) corresponds to the

‘swap’ operatorUsw which simply exchanges the
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quantum states of qubit 1 and 2 [9]. Furthermore,
the quantum XOR can be obtained by applying the
sequence [9]

UXOR = ei(π/2)S
z
1e−i(π/2)S

z
2U 1/2

sw eiπS
z
1U 1/2

sw , (2)

i.e. a combination of ‘square-root of swap’U 1/2
sw and

single-qubit rotations exp(iπSz
i ). SinceUXOR (com-

bined with single-qubit rotations) is proven to be a
universal quantum gate [23], it can be used to assem-
ble any quantum algorithm. The study of universal
quantum computation in coupled quantum dots is
thus essentially reduced to the study of theexchange
mechanismand how the exchange couplingJ (t) can
be controlled experimentally. Note that the switch-
able coupling mechanism described below need not
be restricted to quantum dots: the same principle can
be applied to other systems, e.g. coupled atoms in a
Bravais lattice, supramolecular structures, or overlap-
ping shallow donors in semiconductors.

3.1. Laterally coupled quantum dots

We first consider a system of two laterally coupled
quantum dots containing one (conduction band) elec-
tron each [24]. It is essential that the electrons are
allowed to tunnel between the dots, introducing correla-
tions between the spins via the charge (orbital) degrees
of freedom. We model the coupled system with the
HamiltonianH = ∑

i=1,2 hi + C + HZ = Horb+ HZ,
where

hi = 1

2m

(
pi − e

c
A(r i )

)2

+ V (r i ),

C = e2

κ |r 1 − r 2| . (3)

Here,hi describes the single-electron dynamics in the
2DEG confined to thexy-plane, with m being the
electron band mass. We allow for a magnetic field
B = (0, 0, B) applied along thez-axis and which
couples to the electron charge via the vector poten-
tial A(r ) = B/2(−y, x, 0), and to the spin via a
Zeeman coupling termHZ. The coupling of the dots
(which includes tunneling) is modeled by a quartic
potential,V (x, y) = mω2

0

(
(x2 − a2)2/(4a2)+ y2

)
/2,

which separates into two harmonic wells of frequency
ω0, one for each dot, in the limit 2a � 2aB, wherea is
half the distance between the centers of the dots, and
aB =

√
h̄/mω0 is the effective Bohr radius of a dot.

This choice for the potential is motivated by the exper-
imental fact [16] that the low-energy spectrum of sin-
gle dots is well described by a parabolic confinement
potential. The (bare) Coulomb interaction between
the two electrons is described byC whereκ denotes
the dielectric constant of the semiconductor. The
screening lengthλ in almost depleted regions like few-
electron quantum dots can be expected to be much
larger than the bulk 2DEG screening length (which is
about 40 nm in GaAs). Therefore,λ is large compared
to the size of the coupled system,λ� 2a ≈ 40 nm for
small dots, and we will consider the limit of unscreened
Coulomb interaction (λ/a � 1).

At sufficiently low temperatureskT � h̄ω0 we are
allowed to restrict our analysis to the two lowest orbital
eigenstates ofHorb, one of which is symmetric (spin
singlet) and the other one antisymmetric (spin triplet).
In this reduced (four-dimensional) Hilbert space,Horb

can be replaced by the effective Heisenberg spin Hamil-
tonian Eq. (1), the exchange energyJ = εt − εs

being the difference between the triplet and singlet
energy. Rather than solving this model in an ana-
lytically closed form, we make use of the analogy
between atoms and quantum dots (artificial atoms),
providing us with a powerful set of variational meth-
ods from molecular physics for calculatingεt and
εs. Using the Heitler–London approximation we find
[24],

J = h̄ω0

sinh(2d2(2b − 1/b))

[
3

4b

(
1+ bd2

)+ c
√

b

×
(
e−bd2

I0(bd2)− ed2(b−1/b)I0(d
2(b − 1/b))

)]
,

(4)

where we introduce the dimensionless distanced =
a/aB and the magnetic compression factorb =
B/B0 =

√
1+ ω2

L/ω
2
0, whereωL = eB/2mc is the

Larmor frequency. The zeroth order Bessel function
is denoted by I0. The terms in Eq. (4) proportional
to the parameterc = √π/2(e2/κaB)/h̄ω0 are due to
the Coulomb interactionC, where the exchange term
enters with a minus sign. The first term in Eq. (4) comes
from the confinement potential. Note that typically
|J/h̄ω0| � 1, making the exclusive use of ground-state
single-dot orbitals in the Heitler–London ansatz a self-
consistent procedure. The exchangeJ is plotted as a
function ofB andd in Figure 1. We observe thatJ > 0
for B = 0, which must be the case for a two-particle
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Figure 1. The exchange couplingJ (full line) for GaAs quantum dots with confinement ¯hω = 3 meV andc = 2.42. For comparison we
plot the usual short-range Hubbard resultJ = 4t2/U (dashed–dotted line) and the extended Hubbard result [24]J = 4t2/U + V . In (a),
J is plotted as a function of the magnetic fieldB at fixed inter-dot distance (d = a/aB = 0.7), and in (b) as a function of the inter-dot
distanced = a/aB at zero field (B = 0).

system that is time-reversal invariant. The most remark-
able feature ofJ (B), however, is the change of sign
from positive to negative, which occurs at some finite
B over a wide range of parametersc anda. The transi-
tion from antiferromagnetic (J > 0) to ferromagnetic
(J < 0) spin–spin coupling with increasing magnetic
field is caused by the long-range Coulomb interaction,
in particular by the negative exchange term. Large mag-
netic fields (b � 1) compress the electron orbitals and
thereby lead to the exponential decrease ofJ contained
in the 1/ sinh prefactor in Eq. (4). Similarly, the orbital
overlap between the two dots (and thusJ ) decays
exponentially ford � 1. Note, however, that this expo-
nential suppression is partly compensated by the expo-
nentially growing exchange term∝ exp(2d2(b−1/b)).
As a result,J decays exponentially as exp(−2d2b) for
largeb or d. Thus,J can be tuned through zero and
then exponentially suppressed to zero by a magnetic
field in a very efficient way (exponential switching is
highly desirable to minimize gate errors). This sign
reversal ofJ is due to the long-range Coulomb forces
and is not contained in the standard Hubbard approxi-
mation which takes only short-range interactions into
account, and where one findsJ = 4t2/U > 0 in the
limit t/U � 1 (see Figure 1). By working around the
magnetic field whereJ vanishes the exchange interac-
tion can be pulsed on, even without changing the tun-
neling barrier between the dots, by an application of a
local magnetic field.

Qualitatively similar results are obtained [24] when
we refine above Heitler–London result by taking into
account higher levels and double occupancy of the dots
(requiring a molecular orbit approach). Finally, we note
that a spin coupling can also be achieved on a long
distance scale by using a cavity-QED scheme [25] or
superconducting leads to which the quantum dots are
attached [26].

3.2. Vertically coupled quantum dots

Motivated by the experimental progress in the fabri-
cation of both multilayer self-assembled quantum dots
(SAD) [27] as well as etched mesa heterostructures
[28], both with vertical coupling, we have investigated
the exchange coupling in vertically tunnel-coupled
quantum dots [29]. The same methods as for laterally
coupled quantum dots were used. However, the two-
dimensional Hamiltonian Eq. (3) had to be replaced by
a three-dimensional one, taking into account the con-
finementV = Vl + Vv in all three dimensions. The
vertical confinementVv is assumed to have the form
of a double-well, as for the lateral confinement in the
two-dimensional case with curvatureωz at z = ±a,
as shown in Figure 2(b). Here, the lateral confinement
potentialVl is a simple harmonic well. We have, how-
ever, included the possibility that the two quantum dots
have different lateral sizesaB± =

√
h̄/mα0±ωz, lead-

ing to interesting new effects when external fields are
applied (see below). As a consequence of being three-
dimensional, the exchange interaction in vertically
coupled quantum dots is sensitive to magnetic and elec-
tric fields in different directions. Here, we summarize
our results [29] for in-plane (‖) and perpendicular (⊥)
fields (see Figure 2(a)): (1) An in-plane magnetic field
has essentially the same effect as a perpendicular field
in laterally coupled dots; it suppresses the exchangeJ

exponentially. (2) Perpendicular magnetic fields reduce
the exchange coupling between identical dots only very
weakly. However, if two dots of different sizes are cou-
pled, then we expect a non-monotonic behavior ofJ as
a function ofB. IncreasingB from zero, the exchange
first increases untilB = 2mcωzα0+/e, when both elec-
tronic orbitals are magnetically compressed to approx-
imately the same size; then,J decreases weakly, as
in the case of identical dots. (3) Perpendicular electric



405

Figure 2. (a) Sketch of the vertically coupled double quantum-dot system. The two dots may have different lateral diameters,aB+ and
aB−. We consider magnetic and electric fields applied either in-plane (B‖, E‖) or perpendicularly (B⊥, E⊥). (b) The model potential
for the vertical confinement is a double-well, which is obtained by combining two harmonic wells with frequencyωz at z = ±a. (c)
Switching of the spin–spin coupling between dots of different size by means of an in-plane electric fieldE‖ (B = 0). The exchange
coupling is switched ‘on’ atE = 0 (see text). We have chosen ¯hωz = 7 meV,d = 1, α0+ = 1/2 andα0− = 1/4. For these parameters,
E0 = h̄ωz/eaB = 0.56 mV/nm andA = (α2

0+ − α2
0−)/2α2

0+α
2
0− = 6. The exchange couplingJ decreases exponentially on the scale

E0/2A = 47 mV/µm for the electric field.

fields simply detune the single-dot levels, therefore
reducing the exchange coupling. This effect can also
be found for laterally coupled dots. (4) In-plane elec-
tric fieldsE‖ have a very interesting effect for coupled
dots of different size, see Figure 2(c). The larger of the
two dots is shifted by1x−, whereas the smaller dot
is shifted by1x+ < 1x−, where1x± = E‖/E0α

2
0±

and E0 = h̄ωz/eaB. Therefore, the mean distance
between the electrons in the two dots grows asd ′ =√

d2 + A2(E‖/E0)2, whereA = (α2
0+ −α2

0−)/2α2
0+α

2
0−.

The exchange couplingJ , Eq. (4), being exponentially
sensitive to the inter-dot distanced ′, decreases thus
exponentially,J ≈ S2 ≈ exp[−2A2(E‖/E0)

2]. With
this effect we have found another exponential switch-
ing mechanism for quantum gate operation.

4. Single-spin rotations

The theoretical requirement for the single-spin rota-
tions for a spin-1/2 qubit is the following: it must
be possible to subject a specified qubit to a (real or
effective) magnetic field of specified direction and
strength. We have presented various ideas of how to
achieve this previously [9,24]: by the application of
real, localized magnetic fields using a scanned mag-
netic particle or nanoscale electric currents; using a
magnetized dot or magnetized barrier material that the
electron can be inserted in and out of by electric gat-
ing; or by the use ofg-factor-modulated materials [3,4].
We would like to sketch the analysis of the last idea
here.

Due to spin-orbit coupling, the Landé g-factor in
bulk semiconductor materials differs from the free-
electron valueg0 = 2.0023 and ranges from large neg-
ative to large positive numbers for various materials. In
confined structures such as quantum wells, wires, and
dots, theg-factor is modified with respect to the bulk
material and sensitive to an external bias voltage [30].
We have studied the simpler case of a layered structure
in which the effectiveg-factor of electrons is varied
by electrically shifting their equilibrium position from
one layer (withg-factor g1) to another (with another
g-factor g2 6= g1). For simplicity, we use the bulk
g-factors of the layer materials, an approximation
which becomes increasingly inaccurate as the layers
become thinner [31].

We consider a quantum well (e.g. AlGaAs–GaAs–
AlGaAs), in which some fractiony of the Ga atoms
are replaced by In atoms in the upper half of the het-
erostructure (we have usedy = 0.1). The sequence
of layers in the heterostructure is then Ga1−xAl xAs–
GaAs–Ga1−y InyAs–Ga1−xAl xAs, wherex denotes the
Al content in the barriers (typically around 30%).
Changing the vertical position of the electrons in the
quantum well via top or back gates permits control of
the effectiveg-factor for the corresponding electrons.
If the electron is mostly in a pure GaAs environment,
then its effectiveg-factor will be around the GaAs
bulk value (gGaAs = −0.44) whereas if the electron is
in the InGaAs region, theg-factor will be somewhere
between the GaAs and the InAs values (gInAs = −15).
We have numerically analyzed the one-dimensional
problem of a single electron in such a structure (screen-
ing effects are neglected since we are interested in
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isolated electrons located in quantum dots),[
− d

dz

h̄2

2m(z)

d

dz
+ V (z)

]
9(z) = E9(z), (5)

with a spatially varying effective massm(z) by dis-
cretizing it in real space and subsequently performing
exact diagonalization [4]. The potentialV (z) describes
the quantum well (conduction band offset1Ec =
270 meV) and the electric fieldE in growth direc-
tion. For the effective masses andg-factors of the var-
ious layers we have linearly interpolated between the
GaAs, AlAs, and InAs values. The resulting effec-
tive g-factor was calculated by averaging theg-factor
over the electronic ground-state wavefunction,geff =∫

dz g(z)|9(z)|2. We find that at moderate electric
fields,geff interpolates roughly between the GaAs and
Ga1−y InyAs g-factors. If the electric energyeEwB =
eUB becomes larger than the barrier1Ec, we observe
a vertical deconfinement of the electrons. The elec-
tric field required for a substantial change ingeff is
of the order of 10 mV/nm, corresponding to a volt-
age of 100 mV, which is about one order of magni-
tude smaller than the band gap (1.5 eV for GaAs at
T = 0). Since for the above materials and parame-
ters the Zeeman energy is about 100 times smaller than
the typical kinetic energy, we find no noticeable devia-
tion from the linear relation1E(B) ' geffµBB which
might arise due to the Zeeman coupling.

The described quantum well can host an array of
electrostatically defined quantum dots, containing a
single excess electron (and thus a single spin 1/2) each.
In order to carry out a single-qubit operation on one of
the spins, the whole system is placed into a homoge-
neous magnetic field. By changing the voltage at the
electric gate on top of a single quantum dot, the effec-
tive g-factorgeff for the spin in this quantum dot can
be changed by about1geff ≈ 1 with respect to theg-
factor of all remaining spins. This leads to a relative
rotation about the direction ofB by an angle of roughly
φ = 1geffµBBτ/2h̄. The typical switching timeτ for
aφ = π/2 rotation using a field of 1 T is then approx-
imatelyτ ≈ 2φh̄/1geffµBB ≈ 30 ps. Controlling the
top gate atτ−1 ≈ 30 GHz seems very challenging; we
emphasize however that the single-qubit operation can
be done much more slowly (a lower limit is provided by
the spin dephasing time). The switching can be slowed
down either by choosing a smaller1geff or by replac-
ing φ by φ+ 2πn wheren is an integer. Once we have
the possibility to generate different Zeeman splittings
for each qubit (either by an inhomogeneous magnetic

field or inhomogeneousg-factors) we can perform the
switching also by ESR methods [24], where we apply in
addition a homogeneous but time-dependent fieldBac

with an oscillation frequency that matches the Zeeman
splitting energy of the particular qubit one wants to
address.

5. Single-spin measurements

Measurements of the Faraday rotation (cf. Section 2)
originating from a single pair of coupled electrons
would allow us to distinguish between spin singlet and
triplet [29]. If the system is in the singlet state (S = 0,
no magnetic moment) there is no Faraday rotation,
whereas in the triplet state (S = 1) the polarization
of linearly polarized light is rotated slightly due to the
presence of a finite magnetic moment. Such individ-
ual singlet and triplet states in a double dot can also be
detected (through their charge) in transport measure-
ments via Aharonov–Bohm oscillations in the cotun-
neling current and/or current correlations [3,32,33]
(see below).

Above schemes even allow the measurement of a
single spin 1/2, provided that it is possible to per-
form one two-qubit gate operation (see Section 3) and
a subsequent single-qubit gate (see Section 4). Explic-
itly, such a single-spin measurement of the electron
is performed as follows [29]. We are given an arbi-
trary spin 1/2 state|α〉 in quantum dot 1. For sim-
plicity, we assume that|α〉 is one of the basis states,
|α〉 = |↑〉 or |α〉 = |↓〉; the generalization to a super-
position of the basis states is straightforward. The spin
in quantum dot 2 is prepared in the state|↑〉. Then,
a U 1/2

sw gate is performed (cf. Section 3). In the case
|α〉 = |↑〉, nothing happens, i.e. the spins remain in
the state|↑↑〉, whereas if|α〉 = |↓〉, we obtain the
entangled state(|↓↑〉 + i|↑↓〉)/√2 (up to a phase fac-
tor which can be ignored). Finally, we apply a local
Zeeman term,gµBBS1

z
, acting parallel to thez-axis at

quantum dot 1 during the time intervalτB, such that∫ τB
0

(gµBB)(t) dt = π/2. The resulting state is (again
up to unimportant phase factors) the triplet state|↑↑〉
in the case where|α〉 = |↑〉, whereas we obtain the sin-
glet state(|↑↓〉 − |↓↑〉)/√2 in the case|α〉 = |↓〉. In
other words, such a procedure maps the triplet|↑↑〉 into
itself and the state|↓↑〉 into the singlet (similarly, the
same gate operations map|↓↓〉 into itself, while|↑↓〉
is mapped into the triplet(|↑↓〉 + |↓↑〉)/√2, again up
to phase factors). Finally, measuring the total magnetic
moment of the double dot system then reveals which
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of the two spin states in dot 1,|↑〉 or |↓〉, was realized
initially. Note that it is also possible that asinglespin
1/2 will be directly measured via Faraday rotation, or
by making use of spin-selective tunneling devices with
subsequent charge detection [9].

6. Quantum communication with electrons:
detection of entanglement [3,32,33,45]

The availability of pairwise entangled qubits – EPR
pairs [35] – is a necessary prerequisite in quantum com-
munication [34]. The prime example of an EPR pair
considered here is the singlet state formed by two elec-
tron spins, its main feature being its non-locality. If we
separate the two electrons in real space, their total spin
state can still remain entangled. Such non-locality gives
rise to striking phenomena such as violations of Bell
inequalities and quantum teleportation and has been
investigated for photons [36,37], but not yet formas-
siveparticles such as electrons, let alone in a solid-state
environment. This is so because it is difficult to first
produce and to second detect entanglement of electrons
in a controlled way. In this section we describe several
experimental setups by which the entanglement of elec-
trons (once produced as e.g. described in the previous
section) can be detected via their charge in transport
and noise measurements [26,32,33].

6.1. Bunching and antibunching of EPR pairs

We consider the setup shown in Figure 3. Here, the
entangler is assumed to be a device by which we can
generate (or detect) entangled electron states, a spe-
cific realization being the double-dot system discussed
in previous sections. The presence of a beam splitter
ensures that the electrons leaving the entangler have
a finite amplitude to be interchanged (with or without
mutual interaction). The quantity of interest is then the
current–current correlations (noise) measured in leads
3 and/or 4.

It is well-known [38] that particles with symmet-
ric wave functions show bunching behavior [39] in the
noise, whereas particles with antisymmetric wave func-
tions show antibunching behavior. The latter situation
is the one considered so far for electrons in the normal
state both in theory [40,41] and in experiments [42].
However, since the noise is produced by the charge
degrees of freedom we can expect [3] that in the absence
of spin scattering processes the noise is sensitive to the

Figure 3. Uncorrelated electrons are fed into the entangler
through the Fermi leads 1′ and 2′. The entangler is a device (see
text) that produces pairs of electrons in the entangled spin singlet
or one of the spin triplets and injects one of the electrons into lead
1 and the other into lead 2. In the outgoing leads, for singlets we
get bunching due to their orbital symmetry, whereas for triplets
we get antibunching due to their orbital antisymmetry.

symmetry of only theorbital partof the wave function.
On the other hand, since the spin singlet of two elec-
trons is uniquely associated with a symmetric orbital
wave-function, and the three triplets with an antisym-
metric one we have thus a means to distinguish sin-
glets from triplets through a bunching or antibunching
signature. Below we verify this expectation explicitly,
by extending the standard scattering matrix approach
[40,41] to a situation with entanglement.

The operator for the current carried by electrons with
spinσ in leadα of a multiterminal conductor can be
written as [32,40]

Iασ (t) = e

hν

∑
E,E′

[a†
ασ

(E)aασ (E
′)

− b†
ασ

(E)bασ (E
′)]ei(E−E′)t/h̄, (6)

wherea†
ασ

(E) creates an incoming electron in leadα

with spin σ and energyE, and the operatorsbασ for
the outgoing electrons are related to the operatorsaασ

for the incident electrons via the scattering matrix,
sαβ , bασ (E) = ∑

β
sαβaβσ (E). We will assume that

the scattering matrix is spin- and energy-independent.
Note that since we are dealing with discrete energy
states here, we normalize the operatorsaασ (E) such
that {aασ (E), aβσ ′(E ′)†} = δσσ ′δαβδE,E′/ν, whereδE,E′
is the Kronecker symbol, andν the density of states. We
assume that each lead consists of only a single quantum
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channel. We then obtain

Iασ (t) = e

hν

∑
E,E′

∑
βγ

a†
βσ

(E)Aα

βγ
aγσ (E

′)ei(E−E′)t/h̄,

Aα

βγ
= δαβδαγ − s∗

αβ
sαγ . (7)

We restrict ourselves here to unpolarized currents,Iα =∑
σ
Iασ . The spectral density of the current fluctuations

(noise)δIα = Iα − 〈Iα〉 between the leadsα andβ are
defined as

Sαβ(ω) = lim
T→∞

hν

T

∫ T

0

dt eiωt〈9|δIα(t)δIβ(0)|9〉,
(8)

where the state|9〉 is some arbitrary state to be spec-
ified below. Inserting the expression for the currents
Eq. (7) into this definition, we obtain for the zero fre-
quency correlations

Sαβ = e2

hν

∑
γ δεζ

Aα

γ δ
A

β

εζ

×
∑

E,E′,σσ ′

[〈9|a†
γ σ

(E)aδσ (E)a
†
εσ ′(E

′)aζσ ′(E
′)|9〉

−〈9|a†
γ σ

(E)aδσ (E)|9〉〈9|a†
εσ ′(E

′)aζσ ′(E
′)|9〉] .

(9)

We note that since|9〉 in general does not describe a
Fermi liquid state, it is not possible to apply Wick’s
theorem.

6.2. Noise for entangled states

We will now investigate the noise correlations for scat-
tering with the entangled incident state|9〉 = |±〉,
where

|±〉 = 1√
2

(
a†

2↓(ε2)a
†
1↑(ε1)± a†

2↑(ε2)a
†
1↓(ε1)

) |0〉.
The state|−〉 is the spin singlet,|S〉, while |+〉 denotes
one of the spin triplets|T0,±〉; in the following we will
present a calculation of the noise for|+〉 = |T0〉, i.e.
the triplet withmz = 0.

Using |±〉 for |9〉, we get〈±|δIαδIβ |±〉 = 〈↑↓
|δIαδIβ |↑↓〉±〈↑↓|δIαδIβ |↓↑〉, where the upper (lower)
sign of the exchange term refers to triplet (singlet).
After some straightforward manipulations, we obtain
the following result for the correlations between the
leadsα andβ,

Sαβ = e2

hν

[∑′

γ δ

Aα

γ δ
A

β

δγ ∓ δε1,ε2
(Aα

12A
β

21+ Aα

21A
β

12)

]
,

where
∑′

γ δ
denotes the sum overγ = 1, 2 and all

δ 6= γ , and where again the upper (lower) sign refers
to triplets (singlets).

We apply above formula now to the set-up shown in
Figure 3 involving four leads, described by the scatter-
ing matrix elements,s31 = s42 = r, ands41 = s32 = t ,
wherer and t denote the reflection and transmission
amplitudes at the beam splitter, respectively, and with
no backscattering,s12 = s34 = sαα = 0. The unitarity
of thes-matrix implies|r|2+|t |2 = 1, and Re[r∗t ] = 0.
Using above relations, we obtain finally∗,

S33 = S44 = −S34 = 2
e2

hν
T (1− T )(1∓ δε1,ε2

),

(10)

where T = |t |2 is the probability for transmission
through the beam splitter. The calculation for the
remaining two triplet states|+〉 = |T±〉 = | ↑↑〉, | ↓↓〉
yields the same result Eq. (10) (upper sign). Note that
the total currentδI3 + δI4 does note fluctuate, i.e.
S33+S44+2S34 = 0, since we have excluded backscat-
tering. For the average current in leadα we obtain
|〈Iα〉| = e/hν, with no difference between singlets and
triplets. Then, the Fano factorF = Sαα/ |〈Iα〉| takes the
following form:

F = 2eT (1− T )(1∓ δε1,ε2
), (11)

and correspondingly for the cross correlations. This
result confirms our expectation stated in the introduc-
tion: if two electrons with the same energies,ε1 = ε2,
in the singlet state|S〉 = |−〉 are injected into the leads
1 and 2, then the zero frequency noise isenhancedby
a factor of two,F = 4eT (1 − T ), compared to the
shot noise of uncorrelated particles,F = 2eT (1− T ).
This enhancement of noise is due tobunchingof elec-
trons in the outgoing leads, caused by the symmetric
orbital wavefunction of the spin singlet|S〉. On the
other hand, the triplet states|+〉 = |T0,±〉 exhibit an
antibunchingeffect, leading to a complete suppression
of the zero-frequency noise in Eq. (10),Sαα = 0. The
noise enhancement for the singlet|S〉 is a unique sig-
nature for entanglement (there exists no unentangled
state with the same symmetry), therefore entanglement
can be observed by measuring the noise power of a
mesoscopic conductor. The triplets can be further dis-
tinguished from each other if we can measure the spin
of the two electrons in the outgoing leads, or if we

∗For finite frequencies, we obtain the noise powerSαα(ω) =
(e2/hν)[(1− δω,0)+ T (1− T )(2δω,0∓ δω1(ε1−ε2)/h̄)∓ δω1(ε2−ε1)/h̄].
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insert spin-selective tunneling devices [43] into leads
3, 4 which would filter a certain spin polarization.

We emphasize that above results remain unchanged
if we consider states|±〉 which are created above a
Fermi sea. We have shown [3] that the entanglement of
two electrons propagating in a Fermi sea gets reduced
by the quasiparticle weightzF (for each lead one fac-
tor) due to the presence of interacting electrons. In
the metallic regime,zF assumes typically some finite
value†, and thus as long as spin scattering processes are
small the above description for non-interacting elec-
trons remains valid.

6.3. Noise induced by spin currents [32,45,46]

In this subsection we discuss the current noise induced
by the spin transport in a two-terminal conductor
attached to Fermi leads with spin-dependent chemical
potentialsµσ . It is clear that for a stationary situation
a spin reservoir (at chemical potentialµσ ) is needed.
In particular, it is not sufficient to just apply a mag-
netic field gradient along the sample to create a station-
ary spin current, since an inhomogeneous field simply
leads to an inhomogeneous magnetization build-up and
after some short relaxation time an initial spin cur-
rent vanishes again. To avoid such a saturation of the
spin current one could make use of an oscillating (in
time) magnetic field gradient, with a frequency which
is larger than the spin relaxation frequency but still
small enough so that the zero-frequency limit consid-
ered above remains applicable. For the present purpose
we simply assume that it is possible to induce a spin-
dependent chemical potential difference leading to a
stationary spin current (but not necessarily to a charge
current). From Eq. (7) we immediately obtain〈Iσ 〉 =
e/hT 1µσ , where we have introduced the difference of
chemical potentials1µσ = µ1σ−µ2σ for each spin ori-
entationσ . Then, applying Wick’s theorem to Eq. (9)
we obtain the noise powerS = e2/hT (1−T )(|1µ↑|+
|1µ↓|). Thus, the contribution of two spin subsystems
to the noise is independent, as it should be if there is
no spin interaction. Therefore, we can rewrite above
expression asS = e(1− T )(|〈I↑〉| + |〈I↓〉|). In par-
ticular, when1µ↑ = 1µ↓ we obtain the usual result
[45] S = e(1− T )|Ic| for the shot noise induced by
the charge currentIc ≡ 〈I↑〉 + 〈I↓〉. On the other hand,

†For instance, in metals such as bulk Cu the quasiparticle weight
becomes within RPA approximationzF = 0.77, while for a GaAs
2DEG we find [3] (also within RPA)zF = 1− rs(1/2+ 1/π) =
0.66 for the GaAs interaction parameterrs = 0.61.

we can consider the situation where1µ↑ = −1µ↓,
and thus there is no charge current through the conduc-
tor, Ic = 0. Still, there is a non-vanishing spin current
Is ≡ 〈I↑〉 − 〈I↓〉, and according to the above result one
can observe the current noiseS = e(1−T )|Is| induced
by spin transport only.

6.4. Spin-dependent current through a double-dot
[33]

We turn now to a further scenario where entanglement
can be measured in the current [33]. A double-dot sys-
tem which is weakly coupled to an ingoing (1) and an
outgoing (2) lead held at chemical potentialsµ1(2), but
where now an electron coming from lead 1(2) has the
option to tunnel intobothdots 1 and 2 with amplitude
0. In contrast to previous studies the double-dot is put
in parallel instead of in series between the two leads.
This results in a closed loop, and applying a magnetic
field, an Aharonov–Bohm phaseϕ will be acquired
by an electron traversing the double-dot. Note that the
double-dot (containing two entangled electrons with
the singlet being their ground state) can be viewed as
an artificial H2 molecule (this should be carefully dis-
tinguished from the singlet in a single dot like an He-
atom, which cannot be used for the present purpose
because the two electrons are not separated in space). In
the Coulomb blockade regime where the electron num-
ber on the dots is quantized and kept fixed we find that
due to cotunneling the current traversing the double-
dot becomes

I = eπν204 µ1 − µ2

µ1µ2

(2± cosϕ), (12)

where the upper (lower) sign refers to triplet (sin-
glet) state in the double-dot. This result is valid for
U > |µ1±µ2| > J > kBT , 2πν02, with U the single-
dot charging energy,ν the lead density of states, and0

the tunneling amplitude between dots and leads. When
calculating the zero-frequency noise [33]S(ω = 0)

we find that the noise assumes its Poissonian value,
S(0) = −e|I | and no new information is gained. More-
over, when we calculate the finite frequency noise,
S(ω), we no longer find a Poissonian behavior, but
still we haveS(ω) ∝ (2 ± cosϕ). Thus,the current
and noise reveal via the sign of the AB oscillations
whether the double-dot is in a singlet or triplet state.
The triplets can be further distinguished by applying
spatially inhomogeneous magnetic fields leading to a
beating of the AB phase oscillation due to the Berry
phase [33].
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6.5. Spin-dependent Josephson current through
double dots [26]

Finally we discuss a scenario, S-DD-S, with a dou-
ble dot each dot of which is tunnel-coupled to super-
conducting leads [26]. These superconductors not only
induce spin correlations between the two spins on the
dots but also allow us to detect these correlations via the
supercurrent traversing the dots. In particular, it turns
out that this connection via a superconductor induces a
Heisenberg exchange coupling between the two spins
on the double dot, with an effective Hamiltonian,

Heff ≈ J (1+ cosφ)
[
Sa · Sb − 1

4

]
, (13)

with J ≈ 202/ε, where again0 is the tunneling ampli-
tude (between dot and lead), andε the energy level
of the dots below the lead Fermi level. Here,φ is the
phase difference across the S-DD-S Josephson junc-
tion. Again, we see that we can tune the exchange
coupling between the spins by tuning an external con-
trol parameter such as0 or the phaseφ. Connecting
the superconducting leads into a SQUID-ring with one
additional ordinary Josephson junction (of couplingJ ′

and phase differenceθ ) and one S-DD-S junction we
can drive a supercurrentIS through the SQUID which
will allow us to probe the spin states on the dots. Indeed,
we find [26]

IS/IJ =
{

sin(θ − 2πf )+ α sin θ (singlet),

α sin θ (triplets),

(14)

whereIJ = 2eJ/h̄. When the system is biased by a
dc currentI larger than the spin- and flux-dependent
critical current, given by maxθ{|IS|}, a finite voltageV
appears which then also depends on the spin states and
thus allows one toprobethe entanglement of the spins
[26].

7. Conclusions

We have shown that the use of spin as qubit in elec-
tronic nanostructures offers a promising route toward
the implementation of quantum gates, entangled states
and quantum communication, with the possibility of
upscaling that will eventually lead to quantum com-
puters. The field of spintronics – the manipulation and
detection of phase-coherent electron spins in the solid
state – is a rapidly growing field of its own interest,

and it is a fortunate situation that the study of quan-
tum spin effects has promising applications not only
for quantum computing and quantum communication
but also for ordinary computer hardware (such as non-
volatile memories). We have discussed theoretical pro-
posals how spins (qubits) can be manipulated via their
charge degrees of freedom to achieve single-qubit and
two-qubit gate operations, and how they can be trans-
ported in entangled EPR states which are needed for
Bell measurements and eventually for quantum com-
munication purposes.
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