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Semiconductors with abundant nuclear spin-free isotopes are 
increasingly being investigated as host material for spin qubits, 
e.g. silicon [1], germanium [2], and graphene [3, 4]. It turns out 
that most of these materials comprise an electron valley degree 
of freedom [5] in the conduction band of the bulk material. 
In many nanostructures based on these semiconductor mat
erials, the resulting valley splitting is still not fully understood 
and therefore represents in practice an unpredictable system 
parameter. It is known that the valley degree of freedom can 
be described as a pseudo-spin in a two dimensional electron 
gas (2DEG) whose attributes, i.e. valley-splitting and valley-
phase, drastically depend on the interface of the heterostruc-
ture [6–13]. A single atomic step can change the quantization 
axis of the pseudo-spin and the complex phase of the valley-
orbit coupling of an electron can be modified by as much as π 

[11–13]. This has a large impact on silicon quantum computa-
tion [1] for most qubit implementations, which use the spin 
degree of freedom to encode quantum information [14]. For 
multi-qubit quantum processors [15–18] and multi-spin qubit 
implementations [19–22], the presence of the valley leads to 
several non-computational states into which the information 
can ‘leak’. Since the number of leakage states exponentially 
increases with the number of electrons, the resulting complex 
energy diagram with a high density of states makes it diffi-
cult to find the optimal parameter regimes for encoding and 
operating such qubits. Therefore, a precise knowledge of the 
valley structure is required for high-fidelity qubit implementa-
tions and operations. A lower bound to the valley splitting can 
be obtained using ground-state magnetospectroscopy [23–27]. 
Alternatively, a hybrid system consisting of a superconducting 
microwave resonator coupled to quantum dots [28, 29], e.g. in 
GaAs [30–32], InAs [33, 34], InSb [35], graphene [36, 37], 
carbon nanotubes [38–40], germanium [41, 42] and silicon 
[43–48], can be used to probe and read out electronic proper-
ties of quantum dots. Recent advances in the coupling of elec-
trons to superconducting microwave resonators [31, 32, 39, 
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40, 43–48] allow for precise read-out of the valley splittings 
in double quantum dots [45, 49]. In this theoretical paper, the 
technique is extended and adapted to extract the valley split-
ting and valley phases in a silicon triple quantum dot (TQD) 
system using such superconducting microwave resonator.

This paper is organized as follows. Firstly, we introduce 
a general theoretical model of the TQD system in section 1. 
For this we use a classical capacitor model to find the elec-
trostatic energies of the electrons and substitute them into 
an extended Hubbard model to account for hopping of the 
electrons between the dots (see section 1.1). Subsequently in 
section 1.2, we use a master equation to find the steady state 
solution of the electron dynamics in the presence of dissipative 
processes. This allows us to find the corresponding occupa-
tion probabilities. Finite temperature effects and an externally 
applied bias are included in our model. In section  1.3, we 
consider the response of a superconducting microwave cavity 
dispersively coupled to the TQD system and use input–output 
theory to derive analytical expressions for the response signal. 
Subsequently, in section 2, we show how one can extract rel-
evant system parameters from the cavity response signal. We 
explicitly demonstrate the case of a single electron in a TQD 
in section 2.1, the case of two electrons in section 2.2, and the 
case of three electrons in section 2.3.

1. Theoretical description

We consider a TQD connected to two leads and a supercon-
ducting transmission line resonator via the center gate (see 
figure 1). In order to describe the TQD theoretically, we first 
construct the bare electron Hamiltonian H of the system and 
introduce the interaction to the leads and the microwave reso-
nator later. We consider a basis with 0, 1, 2 or 3 electrons 
with spin and two-fold valley degeneracy in each dot. For a 

fixed number of electrons ne, there are 
(dd ds dv

ne

)
 possible basis 

states with dd ds dv = 3 × 2 × 2 = 12 being the product of 
the number of dots dd, the spin degeneracy ds, and the valley 

degeneracy dv. Therefore, we have N =
∑3

i=0

(12
i

)
= 299 

basis states in total. Here, we restrict our analysis to the two 
energetically lowest laying orbital levels. Silicon quantum 
dots typically have relatively large orbital energies Eorb = 3
–5 meV [50, 51], thus, the impact of higher orbital levels can 
be neglected for temperatures kBT � Eorb and applied voltage 
biases Vl − Vr � Eorb/|e|||α|| where e is the electron charge 
and ||α|| is the norm of the lever arm matrix [52].

1.1.  Hamiltonian

In order to obtain a good agreement of our theoretical studies 
with experiments we rely on a description with the extended 
Hubbard model. The electrostatic energies are given by a 
capacitor model of the TQD, schematically shown in figure 1. 
The free energy of the triple dot system reads [53]

F =
1
2

QT
effC

−1
dot Qeff,� (1)

where T denotes the transposition and

Qeff = e




nL

nC

nR


− Cgate




V1

V2

V3


− Clead

(
Vl

Vr

)
� (2)

quantifies the total effective charge on the quantum dots com-
posed of the electron occupation number ni and the applied 
gate voltages V = (V1, V2, V3)

T . Here e  <  0 denotes the 
electron charge and ∆V = Vl − Vr  the applied bias voltages 
between the left and right leads. The dot capacitance matrix 
reads

Cdot =




C1 −C12 −C13

−C12 C2 −C23

−C13 −C23 C3


� (3)

which contains the self capacitances Ci and the mutual capaci-
tances C12, C23 and C13. The capacitances between the gates 
and the dots reads

Figure 1.  Illustration of the setup: (a) a superconducting microwave 
resonator capacitively coupled to a linearly arranged silicon TQD 
via the center plunger gate V2. The cavity is probed with the input 
signal ain. Measurement of the transmitted signal aout can be used to 
reconstruct the energy landscape of the TQD. (b) Capacitor model 
of the TQD where each dot is filled with ni electrons (i = L, C, R) 
and capacitively coupled to the electrostatic gates, V1, V2, V3. 
The Cvi denote the capacitance between gate v = 1, 2, 3 and dot 
i = L, C, R. The coefficients Ci,j  describe the capacitances between 
the electrons in dot i and lead j = l, r . Applied voltages to lead 
reservoirs are denoted by Vj . The mutual capacitance Cik describes 
the electrostatic interaction between the electrons in the QDs i and 
k. Black lines capacitively couple neighboring dots, leads or gates, 
and gray lines denote next-neighbor coupling. Cross-coupling 
between the electrostatic gates is neglected since it leads only to an 
overall shift in energy [53].
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Cgate = −




C1L C2L C3L

C1C C2C C3C

C1R C2R C3R,


� (4)

and

Clead =



−CL,l 0
−CC,l −CC,r

0 −CR,r


� (5)

contains the capacitances between the dots and the left and 
right lead. For later convenience we also define the chemical 
potential in each dot

µL(V) = F
(
(nL + 1, nC, nR), V

)
− F

(
(nL, nC, nR), V

)
,� (6)

µC(V) = F
(
(nL, nC + 1, nR), V

)
− F

(
(nL, nC, nR), V

)
,� (7)

µR(V) = F
(
(nL, nC, nR + 1), V

)
− F

(
(nL, nC, nR), V

)
.� (8)

The total Hamiltonian of the hybrid TQD-resonator system is 
given by

H = Hcharge + HZeeman + Hvalley + Htunnel,� (9)

where the individual contributions are introduced below.
The electrostatic interaction is described by the Hamiltonian

Hcharge = F
(
(0, 0, 0), V

)

+
∑

i

∂F
(
(nL, nC, nR), V

)
∂ni

∣∣∣∣
nL,C,R=0

n̂i

+
1
2

∑
i,j

∂2F
(
(nL, nC, nR), V

)
∂ni∂nj

∣∣∣∣
nL,C,R=0

n̂in̂j

� (10)

= F0 + e
∑

i,j

CgateVj
(
C−1

dot

)
ijn̂i +

e2

2

∑
i,j

(
C−1

dot

)
ijn̂in̂j� (11)

with n̂i =
∑

s,v c†i,s,vci,s,v and the free energy F defined in equa-
tion (1). Here c†i,s,v (c

†
i,s,v) creates (annihilates) an electron in 

dot i = L, C, R, with spin s =↑, ↓, and occupying the v = ± 
valley state.

An externally applied magnetic field B breaks the spin-
degeneracy. Considering a homogeneous magnetic field 
B = (0, 0, B), the Zeeman splitting is described by

Hzeeman =
EZ

2
(n̂↑ − n̂↓)� (12)

with n̂s =
∑

i,v c†i,s,vci,s,v. The Zeeman energy is EZ = gµBB 
where g ≈ 2 is the electron g-factor in silicon. To be pre-
cise, the electron g-factor depends on the valley and orbital 
level and is slightly anisotropic giving rise to small effective 
magnetic field gradients [54]. Here, this small anisotropy is 
neglected.

For a silicon heterostructure the two minima in the conduc-
tion band [1] give rise to the valley degree of freedom. The 
valley splitting can be expressed locally in QD i as [6]

Hv,j =
1
2

(
0 ∆j

∆∗
j 0

)
� (13)

with the complex quantity ∆j = E j
V eiφj consisting of the valley 

splitting E j
V and valley phase φj in dot j = L, C, R. Because 

of atomistic defects at the silicon interface the valley pseudo-
vector can have a different phase in each dot [11, 22, 49, 55]. 
The valley Hamiltonian in the valley eigenbasis of each dot 
can be written as

Hvalley =

3∑
i=1

Ei
V

2
(n̂i,+ − n̂i,−)� (14)

with n̂i,v =
∑

s c†i,s,vci,s,v. In this particular choice of represen-
tation the valley phase is transferred to the coupling matrix 
elements between the quantum dots. The single-qubit inter-
dot matrix elements in the valley eigenbasis can be expressed 
as [49]

c†i,s,vcj,s,u → cos(θij) c†i,s,vcj,s,u + i sin(θij) c†i,s,vcj,s,ū� (15)

with i, j = L, C, R, v = ±, u = ± and ū = −u. The real-
valued quantities θij = (φi − φj)/2 can be visually interpreted 
as the angle between the direction of the valley pseudo-spin 
in dot i and dot j .

Off-diagonal elements of H allow for coherent hopping of 
electrons between neighboring quantum dots. In our model 
hopping is only allowed between basis states with the same 
total electron number, the same total spin, and conserves the 
valley. Because of equation  (15), the tunneling Hamiltonian 
reads as

Htunnel =
∑
i,j,s,v

tij
[
cos(θij) c†i,s,vcj,s,v

+ i sin(θij) c†i,s,vcj,s,v̄

]
,

�
(16)

with tij = tji . We define

tL = cos(θLC) t12,� (17)

t′L = i sin(θLC) t12,� (18)

tR = cos(θRC) t23,� (19)

t′R = −i sin(θRC) t23,� (20)

t13 = cos(θLR) t13,� (21)

t′13 = −i sin(θLR) t13.� (22)

The tunnel barriers are assumed to be adjusted such that 
the hopping matrix elements between the ground states are 
equal in strength, i.e. |tL| = |tR|. Note that, to warrant a unique 
stationary solution (see below), we chose the valley phases 
θ12 �= n1

π
2  and θ23 �= n2

π
2  with integer n1, n2. Because of the 

linear alinement of the TQD direct hopping between the left 
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and the right dot becomes negligible, thus, we set t13  =  0. As a 
consequence the valley phase θLR becomes undetectable.

1.2.  Occupation probabilities

In order to calculate the occupation probabilities of the dots 
in the stationary state, we assume that incoherent transitions 
can occur between the eigenstates of H, both internally and 
via electron hopping between the TQD and the leads. These 
incoherent interactions with the environment can be taken into 
account with the Lindblad master equation

ρ̇ = − i
�
[H, ρ] +D(ρ),� (23)

where � is the reduced Planck constant and ρ  is the density 
matrix. The dissipative part D(ρ) consists of the following 
terms

D(ρ) =
∑

v=±,s=↑↓
i=L,R

Γi

(
D
[
c†i,s,v

]
(ρ) + D

[
ci,s,v

]
(ρ)

)
+
∑
λ,λ′

τ−1
λλ′D

[
bλλ′

]
(ρ).

� (24)

Here D
[
O
]
(ρ) = O†ρO − (ρOO† + OO†ρ)/2 is the usual 

Lindbald super operator, Γi  is the transition rate from the lead 

i = L, R to the dot i, and the operators c†i,s,v, and ci,s,v create and 
annihilate an electron in dot i and valley v with spin s, respec-
tively. The first and second terms of (24) correspond to the 
flow of electrons from lead i = l, r  into dot i = L, R and in the 
opposite direction, out of the dot to the lead. The third term 
in (24) describes excitations within the TQD, i.e. incoherent 
interactions with a bosonic bath, such as phonons, that can 
induce transitions from one eigenstate of H to the other with 
the same total number of electrons in the dots with the same 
total spin. The operator bλλ′ = |λ〉 〈λ′| takes the system from 
an initial state |λ′〉 to a final state |λ〉 with a transition rate τ−1

λλ′.
We assume that the level broadenings, caused by the inter-

action with the leads and the bosonic bath, are smaller than the 
level splittings between the eigenstates of H which we ensure 
by an external magnetic field B. This is the so-called secular 
approximation [56], which results in a steady-state density 
matrix ρ  diagonal in the eigenbasis of H. This significantly 
simplifies the Lindblad equation (23), where the commutator 
vanishes and after taking the matrix representation of the 
remaining dissipative term in the eigenbasis of H, we obtain 
Redfield equations  for the diagonal elements of the steady-
state solution

0 = ρ̇n =
∑

m
j=L,R

Γj (ρmcmjn − ρncnjm + ρmcnjm − ρncmjn)

+
∑
m�=n

(
τ−1

nm ρm − τ−1
mn ρn

)
,

�

(25)

where m, n runs over all diagonal elements of ρ . The terms 
in (25) are approximations of their respective counterparts 
in (24). Here ρn ≡ 〈n|ρ|n〉 is the nth diagonal element of the 

density matrix ρ , and cmjn =
∑

v,s |〈m|cj,s,v|n〉|2, which can be 
finite only if there is one more electron in state |n〉 than in |m〉.

We can extend this description toward finite temper
atures in the leads with the following replacement rules in 
equation (25)

ρmcmjn → ρmcmjnnnjm� (26a)

ρncmjn → ρncmjnnmjn,� (26b)

where nmjn = nFD
(
Em − En + (νm − νn)|e|Vj, T

)
, Em and En 

are the eigenenergies, νm and νn the number of electrons in the 
given eigenstates of H, and

nFD(δEj, T) =
1

exp(δEj/(kBT)) + 1� (27)

is the Fermi–Dirac distribution of the electrons in the lead j , 
with kB and T being the Boltzmann constant and the electron 
temperature.

To include finite temperature effects in equa-
tion  (25) the τ−1

mn  transition rates in (25) are redefined as 
τ−1

mn = γmn nBE(Em − En, T) with the temperature dependent 
prefactor

nBE(δE, T) =
1

exp(|δE| /(kBT))− 1
+Θ(−δE)� (28)

which accounts for the Bose–Einstein statistics of the environ
mental thermal bath, that is assumed to be in thermal equilib-
rium with the electronic system and having an approximately 
constant density of states in the relevant energy window of 
the transitions. Moreover, Θ(·) denotes the Heaviside step 
function.

We use the following phenomenological model to describe 
incoherent decay from |m〉 → |n〉 with rate

γmn = 〈m||·| Γeff |n〉|·|,� (29)

where |n〉 denotes the eigenstate of the unperturbed system 
given in equation (9) with eigenenergy En. In our model |m〉|·| 
denotes the absolute-valued eigenvector obtained by taking 
the absolute value of each entry in |m〉 in the eigenbasis of H 
and the matrix elements of the effective decay rate read

Γeff,pq = γc〈p|
∑
s,v

|i−j|=1

c†i,s,vcj,s,v|q〉
� (30a)

+γv〈p|
∑
s,v

|i−j|�1

c†i,s,vcj,s,v|q〉
� (30b)

+γs〈p|
∑
s,v,v′

|i−j|�1

c†i,s,vcj,s,v′ |q〉,
� (30c)

with i, j ∈ L, C, R, v = ±, s =↑, ↓, and v  (s) being the flipped 
valley (spin). Here, γc denotes the pure charge relaxation 
rate and γv describes the relaxation rate involving a valley 
flip. We neglect any spin-related decays, γs = 0 due to the 
long spin-flip time on the order of milliseconds. Because 
of γc � γv a decay channel, where both the charge and the 
valley changes, is always limited by the smaller decay rate 
and the valley decay γv serves as a bottleneck of the process. 
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The matrix elements are between eigenstates |p〉, |q〉 of 
H0 = Hcharge + HZeeman + Hvalley.

Equation (25) can cast into a more concise form, which 
also reflects the temperature dependence

0 = ρ̇n =
∑
m�=n

(Γnmρm − Γmnρn)

+
∑
m�=n

(
τ−1

nm ρm − τ−1
mn ρn

)
,

� (31)

where the total decay rate Γmn of the state |n〉 to state |m〉 with 
one electron hopping on or off the TQD is given by

Γmn =
∑

j=L,R

Γj (cmjn + cnjm) nmjn.� (32)

Note that depending on the direction of the hopping, either 
cmjn or cnjm will be zero. This set of classical rate equations can 
also be formulated as a matrix equation  Mρ = 0, where ρ is 
a vector of the diagonal elements of the density matrix ρ . The 
steady-state solution in the secular approximation is thus pro-
vided by the nullspace of the matrix M, as a normalized vector 
of the probabilities ρk for finding the system in its kth eigen-
state. If the calculation of the nullspace of M does not return 
the expected, physically meaningful result because of numer
ical inaccuracies, then the direct integration of equation (31) 
with the initial condition of a thermal distribution can deliver 
the correct solution.

1.3.  Input–ouput theory

For read-out of the energies in the system, one can directly 
connect the oscillating voltage generated inside the micro-
wave resonator to one of the gate potentials (see figure 1(a)). 
The response of the system to a microwave probe field due to 
this electric dipole coupling can be determined using cavity 
input–output theory [57]. We assume that the microwave field 
can induce transitions between all energy levels of the TQD, 
whereby transitions between neighboring energy levels are 
more likely for low temperatures and bias voltages. Following 
the calculation given in [49, 58–60] the transmission coeffi-
cient A of the output signal for the TQD is

A =
−i

√
κ1κ2

ωres − ωP − iκ/2 + gc
∑N

m=1
∑N

n=1 dm,nχm,n
.

� (33)
The electric susceptibility of the TQD is given by

χn,m =
−gcdm,n(ρn − ρm)

Em − En − ωP − i(γ∗
mn + τ−1

mn /2)
.� (34)

Here dn,m is the dipole matrix element pertaining to the n → m 
transition, τ−1

mn  is the relaxation rate (see equation  (29)), 
and γ∗

mn = γdep
∑

i(∂(Em − En)/∂Vi)/||α|| describes pure 
dephasing with rate γdep due to charge noise [20]. The total 
cavity decay rate is κ = κ1 + κ2 + κi, where κ1 and κ2 are 
the photon decay rates through the input and output ports and 
κi is the intrinsic photon decay rate. The probe frequency 
and the cavity resonance frequency are denoted by ωP and 
ωres, and gc (also commonly known as gc = 2g0) is the elec-
tric dipole coupling strength. The charge noise is coupled 

through the electrodes to the electrons via the lever arm matrix 
α = e C−1

dot Cgate. The summation in equation (33) runs over all 
the possible transitions within the N-electron states, and the 
eigenstates are indexed with increasing eigenenergies En. The 
dipole matrix can be calculated easily in the basis of H, by 
taking the derivative

D =
∂H(V1, V2, V3)

∂V2
,� (35)

with gate V2 connected to the resonator (see figure 1(a)). The 
dipole matrix elements are then accordingly defined as

dm,n = 〈m|D|n〉.� (36)

2.  Results

Our goal is to extract information about the energetic structure, 
in particular the valley splitting and valley phase, of the TQD 
system from a measurement of the output signal of the micro-
wave resonator. We expect, in analogy to [49], that the finite 
dipole moment at avoided crossings in the TQD system yields 
measurable features in the output signal. Ideally, the location 
of these features as a function of detuning parameters allows 
us to reconstruct the energy spectrum of the triple dot. In order 
to limit the number of anti-crossings we first analyze the case 
of a single electron in the triple dot. Afterwards, we use the 
collected information to interpret the case of three electrons 
which has broad interest due to the realization as an exchange-
only qubit [20].

We further consider a homogeneous magnetic field with 
Zeeman spin splitting Ei

Z = EZ = 0.3 meV (corresponding 
to B ≈ 2.6 T in silicon) larger than typical valley splittings 
EZ > Ei

V  for i = L, C, R in SiGe quantum dots. Such high 
magnetic fields typically significantly reduce the quality factor 
of the superconducting transmission line resonator which can 
be circumvented by careful alignment of the magnetic field 
[44]. The presence of a magnetic field allows us to ignore the 
spin degree of freedom and focus solely on valley physics. 
The remaining simulation parameters are listed in appendix C.

In principle the methods introduced here can be also be 
used in the emerging field of transition metal dichalcoge-
nide (TMDC), e.g. MoS2 and WSe2, quantum dot structures 
[61–65]. Similar to silicon these materials also possess an 
additional electron valley degree of freedom. An effective 
Hamiltonian for TMDC quantum dots [66] shows simi-
larities to Hamiltonian equation  (9) with modified material 
parameters and the requirement of a spin–orbit interaction 
term. Therefore, the techniques presented below might serve 
as a complementary tool to optical methods [64] to extract 
the energy spectrum of TMDC quantum dots. However, 
depending on the expected valley splittings [67], the magnetic 
field and the interdot tunneling needs to be adjusted.

2.1.  One electron in a TQD

Considering a single electron in the TQD the total Hamiltonian 
reads
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H1e = Hcharge,1e + Hvalley,1e + HZeeman,1e + Htunnel,1e� (37)

which can be obtained from Hamiltonian (9) using N  =  1. The 
charge Hamiltonian (here in the basis |L〉, |C〉, |R〉)

Hcharge,1e =



ε− εM

3 0 0
0 2εM

3 0
0 0 −ε− εM

3


+ εg13� (38)

contains the electrostatic interactions from the capacitor 
model. The two detuning parameters are defined as

ε = (µL − µR)/2� (39)

εM = µC − (µL + µR)/2� (40)

where µi is the chemical potentials of quantum dot i = L, C, R 
given in equations  (6)–(8) with N = (0, 0, 0). The average 
energy in the TQD is then given by

εg = (µC + µL + µR)/3.� (41)

Through a variation of εg the total amount of electrons inside 
the TQD can be adjusted. Furthermore, we introduce two 
additional detuning parameters

εL = (µL − µC)/2,� (42)

εR = (µR − µC)/2.� (43)

These two detuning parameters have two implications. Firstly, 
εL and εR allow for a simple investigation of the (1,0,0)-(0,1,0) 
and (0,0,1)-(0,1,0) charge transitions. At these transitions 
the TQD behaves like a DQD with one charge state highly 
separated in energy. This effectively reduces the system to 
a conventional charge qubit. Secondly, unlike the set, ε, εM, 
and εg, the set εL, εR, and εg does not form an orthogonal set. 
Therefore, it is impossible to sweep through the left charge 
qubit along εL while keeping the average energy εg and the 
right-center detuning εR constant. Respective cuts along εL 
and εR seem to be non-orthogonal to the respective charge 
transition in (ε, εM) space (see figure 2(a)).

2.1.1.  Zero bias.  The valley degeneracy effectively creates 
two copies of the charge states which are coupled by the val-
ley non-conserving tunnel amplitudes. Therefore, instead of 
a single anti-crossing between charge states we expect to see 
four anti-crossings [49]. In figure 2(a) the phase shift of the 
cavity signal for the single electron is shown as a function 
of the two detuning parameters ε, εM. At the (1,0,0)-(0,1,0) 
and the (0,0,1)-(0,1,0) charge transitions we see the splitting 
of a single line into three and five distinct lines. A cut along 
the left-center detuning εL shows in comparison to the level 
diagram that the phase responses directly match the corre
sponding valley splittings (see figure 2(c)). We observe a phase 
response (peak) at ε1

L = −
(
EL

V + EC
V

)
/4, ε2

L =
(
EL

V − EC
V

)
/4, 

ε3
L =

(
EL

V − EC
V

)
/4, and ε4

L =
(
EL

V + EC
V

)
/4.

A cut along the right-center detuning εR shows a very similar 
phase response (see figure 2(d)). We observe a phase response 
(peak) at ε3

R = −
(
ER

V − EC
V

)
/4 and ε4

R =
(
ER

V − EC
V

)
/4. 

However, there is no phase response at εR = ∓
(
ER

V + EC
V

)
/4 

but instead two phase responses (each a sharp dip followed 

by a sharp peak) at ε1
R = −58.8 µeV, ε2

R = −50.1 µeV and 
ε5

R = 49.6 µeV, ε6
R = 58.3 µeV (simulation parameters are 

listed in appendix C). This splitting into two signals appears 
if the energy splitting at the avoided crossing is smaller than 
the resonator frequency, 2t′R < �ωres. The microwave reso-
nator becomes resonant with the ground-state excited-state 
transition �ωres = E3 − E2 at exactly two points (see crossing 
between dashed and solid lines in figure  2(d)). For small 
tunnel couplings |t′R| � |EL

V + EC
V |/4 the left anti-crossing 

between the first and second excited state in figure 2(d) can 
be approximated by an isolated two-level system with energy 
splitting

∆ER,1 = 2
√
(εR − ε̃1

R)
2 + |t′R|2,� (44)

where ε̃1
R is the position in εR detuning space. From the equa-

tion  above it follows that (ε1
R + ε2

R)/2 = −
(
ER

V + EC
V

)
/4. 

Similarly, we find the position of the right anti-crossing between 
the first and second excited state at (ε5

R + ε6
R)/2 =

(
ER

V + EC
V

)
/4.

In total we extract the valley splittings EL
V = 77.7 µeV, 

EC
V = 98.2 µeV, and ER

V = 118.6 µeV which are roughly 2% 
smaller than the input settings ẼL

V = 80 µeV, ẼC
V = 100 µeV, 

and ẼR
V = 120 µeV. We attribute this small systematic error 

to a deformation of the energy levels due to the mixing of the 
different levels via tunneling. To mitigate these kind of errors 
the cuts along εL and εR can be performed further away from 
the triple point, ε = εM = 0 where all three charge configura-
tions intersect. Note that we assumed an electron temperature 
T  =  1 K to occupy the excited states and see features of the 
excited valley states in figure 2(a). The phase response of the 
cold simulation with T  =  30 mK but applied bias ∆V = 0.3 
meV between the two leads shows similar features (see 
figure 2(b)) in the vicinity of the triple point. However, there 
is only a small energy window in which a finite charge current 
is possible [53] and higher lying valley states have a finite 
occupation probability. At the relevant (1,0,0)-(0,1,0) and the 
(0,0,1)-(0,1,0) charge transitions the charge current is blocked 
suppressing any probe signal from higher states (see appendix 
B). An alternative measurement scheme for small temperature 
is discussed in the next subsection.

The extraction of the valley phase is a more challenging 
task. Following the procedure in [45] the valley phase can 
be estimated by fitting the amplitudes of the phase response 
for the avoided crossings at ε1

L, ε2
L, ε3

L, and ε4
L in figure  2(c) 

to the tunnel couplings tL and t′L. Unfortunately, the fit-
ting includes two more unknown parameters (taking into 
account charge noise) making the fits hard and unstable. 
Furthermore, this method requires large tunnel couplings 
2|tj, t′j | > �ωres with j = L, R to gain a single response signal 
which for our parameter setting is not fulfilled for the (0,1,0)-
(0,0,1) charge transition. Then the tunnel coupling strength 
|tR| and |t′R| can be extracted by fitting to the energy gap. 
For small tunnel amplitudes equation  (44) provides a suffi-
cient approximation. Alternatively, for a frequency tunable 
resonator [31] the tunnel couplings can be extracted using 
spectroscopy by observing the splitting of the signal into two 
signals mentioned above. Using equations (17)–(20) the two 
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valley phases are given by θLC = tan−1 |t′L/tL| = 0.23π and 
θRC = tan−1 |t′R/tR| = −0.2π. Note that resonators with a 
large frequency regime of operation base typically on arrays 
of SQUID loops [31], thus, can only operate at small magnetic 
fields while resonators resilient to magnetic fields are limited, 
∆f ≈ 1 GHz [44].

The methods introduced here do not provide a way to 
measure the valley angle between the left and right valley 
pseudo-spin θLR. In our simplified picture for the tunneling 
between the dots, a direct tunnel matrix element t13 between 
the left and right dot is set to zero which is close to the real sce-
nario for a linear array. For a triangular geometry of the triple 
dot all tunnel matrix elements are finite and the remaining 
valley phase difference θLR can be directly measured by per-
forming the same type of measurement to extract θLC  and θRC 

at the (1,0,0)-(0,0,1) charge transition. This requires the com-
parison of the tunnel couplings t13 and t′13. Furthermore, we 
note that in the presence of a triangular geometry a closed path 
can give rise to a non-vanishing geometric phase. This can in 
principle also be used to probe the valley in a complementary 
way.

2.1.2.  Finite bias at low temperature.  Instead of the two-step 
measurement to extract the energy spectrum from cuts through 
the (1,0,0)-(0,1,0) and (0,1,0)-(0,0,1) charge configurations 
discussed above, an investigation of the charge intersection 
point (1,0,0)-(0,1,0)-(0,0,1) yields the same information about 
the valley splitting. This is especially interesting for measure-
ments at low temperatures since the fine-structure of cuts 
through (1,0,0)-(0,1,0) and (0,1,0)-(0,0,1) charge transitions 

Figure 2.  (a) Calculated phase response ∆Φ = arg(A) of the probe signal of the TQD filled with a single electron coupled to the 
microwave cavity in thermal equilibrium at T  =  1 K and without applied voltage bias ∆V = 0 as a function of the TQD detuning 
parameters ε and εM. Here (nL, nC, nR) denotes the occupation of dot i by ni with i = L, C, R electrons. The left and right white lines are cuts 
along the double quantum dot (DQD) detuning parameters εL and εR while keeping εg and the respective orthogonal detuning parameter 
fixed. This allows for the investigation of the (1,0,0)-(0,1,0) and (0,0,1)-(0,1,0) charge transition. (b) Phase response of the probe signal 
of the TQD coupled to the microwave cavity for T  =  30 mK and applied bias ∆V = 0.3 mV. Similar features are visible as for the high-
temperature phase response with zero bias. (c) Cut along εL (white line in (a)) and the energy of the four lowest eigenstates, E1, E2, E3, E4, 
is plotted as function of εL. The peaks ε1

L, ε2
L, ε3

L, and ε4
L in the phase response correspond to an anti-crossing between states |E2〉 ↔ |E3〉, 

|E1〉 ↔ |E2〉, |E3〉 ↔ |E4〉, and |E2〉 ↔ |E3〉. (d) Cut along εR (white line in (a)). For identification of the avoided crossings also the energy 
of the four lowest eigenstates, E1, E2, E3, E4, is plotted as function of εR. For convenience the E2 + �ωres (black-dashed) is also shown. The 
peaks ε3

R and ε4
R in the phase response correspond to an anti-crossing between states |E1〉 ↔ |E2〉 and |E3〉 ↔ |E4〉. The very sharp peaks ε1

R 
and ε2

R and ε5
R and ε6

R correspond to the condition E3 − E2 = �ωres (crossings of black-dashed line). The void area between the (0,1,0) and 
(0,0,1) originated from a steady state with a completely depleted TQD.
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is invisible in the spectroscopic data due to the blocked charge 
current while current flow near the triple intersection points 
populates the necessary excited valley states (see appendix B). 
Considering the same setup as above there are n  =  23  =  8 cop-
ies of the triple intersection point (1,0,0)-(0,1,0)-(0,0,1) due to 
the presence of the valley degree of freedom. The location of 
the intersection points εn

Q in detuning space (ε, εM) are shown 
in table 1 together with an approximate energy necessary to 
populate the corresponding states. Each triple intersection 
point can be approximated for (ε, εM) = εn

Q by the three-level 
system with eigenenergies

En
Q,1 =

√
|tn

x |2 + |tn
y |2,� (45)

En
Q,2 = 0,� (46)

En
Q,3 = −

√
|tn

x |2 + |tn
y |2,� (47)

where tn
x ∈ {tL, t′L} and tn

y ∈ {tR, t′R} depending on the inter-
section point. Close to these points the three-level system 
forms a coupled two-level system between the states |En

Q,1〉 
and |En

Q,3〉 with the third state |En
Q,2〉 lying in the middle, where 

|En
Q,i〉 denotes the eigenstate with eigenenergy En

Q,i. The three-
level system posses a large electric quadrupole between the 
eigenstates |En

Q,1〉 and |En
Q,3〉 [68, 69]; all dipole moments are 

suppressed due to symmetry. Therefore, a symmetric archi-
tecture of the TQD resonator system, i.e. connecting the 
resonator via the center gate, is advantageous for probing 

these triple points. The probe frequency is ideally set to 

�ω̃P = �ω̃res = En
Q,1 − En

Q,3 ≈
√

2ωP .
Figure 3 shows the phase response of the probe signal 

in the vicinity of triple points for (a) ∆V = 0.3 mV and (b) 
∆V = −0.3 mV. For an extraction of all three valley split-
tings a minimum of three triple points are necessary. If not 
enough features are visible in the phase response reversing the 
direction of the charge current helps to locate the position of 

Table 1.  Coordinates of the triple intersection points εn
Q of (1,0,0)-(0,1,0)-(0,0,1) charge states in detuning space (ε, εM) as a function of 

the valley splittings EL
V, EC

V , and ER
V. (Forth column) Estimated excitation energy Eex = E − EGS to populate the state with respect to the 

ground state energy at the triple points in the absence of tunneling. The triple points are only visible in the output signal if there is a finite 
population of the corresponding states.

ε εM Eex

ε1
Q

EL
V

4 − ER
V

4
EC

V
2 − EL

V
4 − ER

V
4

0

ε2
Q −EL

V
4 − ER

V
4

EC
V

2 +
EL

V
4 − ER

V
4

EL
V

ε3
Q

EL
V

4 − ER
V

4 −EC
V

2 − EL
V

4 − ER
V

4
EC

V

ε4
Q

EL
V

4 +
ER

V
4

EC
V

2 − EL
V

4 +
ER

V
4

ER
V

ε5
Q −EL

V
4 − ER

V
4 −EC

V
2 +

EL
V

4 − ER
V

4
Max(EL

V , EC
V )

ε6
Q

ER
V

4 − EL
V

4
EC

V
2 +

EL
V

4 +
ER

V
4

Max(EL
V , ER

V)

ε7
Q

EL
V

4 +
ER

V
4 −EC

V
2 − EL

V
4 +

ER
V

4
Max(EC

V , ER
V)

ε8
Q

ER
V

4 − EL
V

4 −EC
V

2 +
EL

V
4 +

ER
V

4
Max(EL

V , EC
V , ER

V)

Figure 3.  Calculated phase response ∆Φ = arg(A) of the probe signal of the TQD filled with a single electron coupled to the microwave 
cavity for T  =  30 mK and applied voltage bias (a) ∆V = 0.3 mV and (b) ∆V = −0.3 mV as a function of the TQD detuning parameters ε 
and εM. The resonator and the probe frequency ω̃P =

√
2ωP and ω̃res =

√
2ωres are adjusted to probe the charge quadrupole transitions [68, 

69] at the triple intersection points εi
Q (yellow). The positions of ε1

Q, ε2
Q, ε4

Q, and ε7
Q (see table 1) are sufficient to extract the values of all three 

valley splittings EL
V, EC

V , and ER
V.
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missing triple intersection points. We see clearly a response 
in the phase at ε1

Q = (−12, 0) µeV, ε2
Q = (−51, 41) µeV, 

ε4
Q = (49, 61) µeV, and ε7

Q = (49,−39) µeV. In total we 
extract with this method the valley splittings EL

V = 82.4 µeV, 
EC

V = 100 µeV, and ER
V = 122.2 µeV which are roughly 3% 

larger than the input settings ẼL
V = 80 µeV, ẼC

V = 100 µeV, 
and ẼR

V = 120 µeV. We again attribute this error to a defor-
mation of the energy levels due to the mixing of the different 
levels via tunneling and the broadening of the response signal.

2.2. Two electrons in a TQD

An alternative to studying the single electron case to retrieve 
information about the valley is the case of two-electrons in 
the TQD. The total Hamiltonian of the two-electron case is 
given by

H2e = Hcharge,2e + Hvalley,2e + HZeeman,2e + Htunnel,2e� (48)

which can be obtained from the Hamiltonian (9) with N  =  2. 
Focusing only on the (1,1,0), (1,0,1) and (0,1,1) charge con-
figuration regime the charge Hamiltonian can be simplified to

Hcharge,2e =



ε+ εM

3 0 0
0 − 2εM

3 0
0 0 −ε+ εM

3


+ 2εg13� (49)

containing the electrostatic interactions from the capacitor 
model. The detuning parameters ε and εM are (up to a constant 
energy shift) identical to equations (39) and (40). We choose 
the average detuning εg such that the TQD is occupied by two 
electrons for the investigated detunings. In analogy to the 
single electron case the left-center and right-center detuning 
parameters, εL and εR, then allow us to investigate the (1,0,1)-
(0,1,1) and (1,0,1)-(1,1,0) charge transitions. Alternatively, 
one can investigate the (2,0,0)-(1,1,0) and (0,0,2)-(0,1,1) 
transitions, however, we expect them to be less ideal for our 
purpose of extracting information about the valley splitting 
and phase due to the occurrence of doubly occupied dots.

Figure 4.  (a) Calculated phase response ∆Φ = arg(A) of the probe signal of the TQD coupled to the microwave cavity for T  =  1 K and 
no applied voltage bias ∆V = 0. Here (nL, nC, nR) denotes the occupation of dot i = L, C, R with ni with electrons. The left and right white 
lines are cuts along the DQD detuning parameters εL and εR while keeping εg and the respective orthogonal detuning parameter fixed. 
(b) Calculated phase response for T  =  30 mK and applied bias ∆V = 0.3 mV. This allows for the investigation of the (0,1,1)-(1,0,1) and 
(1,1,0)-(1,0,1) charge transition. (c) Cut along εL (white line in (a)) and the energy of the twelve lowest eigenstates, Ei, is plotted as function 
of εL. (d) Cut along εR (white line in (a)). For interpretation also the energy of the twelve lowest eigenstates are plotted as function of εR. 
The sharp peaks ε1

R and ε2
R correspond to the condition E4 − E3 = �ωres.
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2.2.1.  Extracting the valley splitting and phase.  The valley 
degeneracy effectively creates four copies of the charge states, 
two from the valley degree of freedom of each electron, which 
are coupled by the valley non-conserving tunnel amplitudes 
neglecting spin. Thus, in total 16 anti-crossings are observ-
able at the (1,0,1)-(0,1,1) or (1,0,1)-(1,1,0) charge transitions. 
Figure 4(a) shows the phase shift of the cavity signal for two 
electrons as a function of the two detuning parameters ε, εM.

The overall procedure to extract the valley splitting for the 
two electron case is very similar to the single electron case, 
thus, we refrain from repeting its description and only highlight 
the differences. A cut along the left-center detuning εL pro-
vides information about the level splittings (see figure 4(c)). 
For the interpretation of the level-crossings it is useful to 

define the valley z-projection τtot,z =
1
2

∑3
i=1(n̂i,+ − n̂i,−) in 

analogy to spin. The lowest eigenstate in each charge configu-
ration corresponds to a polarized valley triplet state with both 
electrons occupying the valley ground state and the respective 

energy level crossing is at εL = (EL
V − EC

V )/4. The second 
and third energetically lowest eigenstates differ only by the 
difference in valley splitting of the occupied dots neglecting 
exchange interaction. They form symmetric and anti-sym-
metric combinations of an electron in the lower and excited 
valley state. The fourth lowest eigenstate is again a polar-
ized triplet state with both electrons occupying the excited 
valley. Under the assumption of t � Ei

V  the lowest charge 
states intersect at ε1

L = −(EC
V + EL

V)/4, ε2
L = −(EC

V − EL
V)/4, 

ε3
L = (EC

V − EL
V)/4, and ε4

L = (EC
V + EL

V)/4. From figure 4(c) 
we find ε1

L = −43.4 µeV, ε2
L = −4.9 µeV, ε3

L = 5.3 µeV, 
ε4

L = 43.7 µeV.
A cut along the right-center detuning εR between (1,1,0) 

and (1,0,1) charge states shows similar features (see 
figure  4(d)). The respective energy crossing are expected 
at εR = ±(EC

V + ER
V)/4 and εR = ±(EC

V − ER
V)/4. We 

find again a splitting of the signal into two surrounding 
peaks at ε1

R and ε2
R due to 2t′ < �ωres. From figure  4(d) 

Figure 5.  (a) Calculated phase response ∆Φ = arg(A) of the probe signal of the TQD coupled to the microwave cavity for T  =  1 K and 
no applied voltage bias ∆V = 0. Here (nL, nC, nR) denotes the occupation of dot i = L, C, R with ni with electrons. The left and right white 
lines are cuts along the DQD detuning parameters εL and εR while keeping εg and the respective orthogonal detuning parameter fixed. 
(b) Calculated phase response for T  =  30 mK and applied bias ∆V = 0.3 mV. This allows for the investigation of the (2,0,1)-(1,1,1) and 
(1,0,2)-(1,1,1) charge transition. (c) Cut along εL (white line in (a)) and the energy of the ten lowest eigenstates, Ei, is plotted as function 
of εL. (d) Cut along εR (white line in (a)). For interpretation also the energy of the ten lowest eigenstates are plotted as function of εR. The 
sharp peaks ε1

R and ε2
R correspond to the condition E2 − E1 = �ωres.
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we find −(ER
V + EC

V )/4 = (ε1
R + ε2

R)/2 = −53.9 µeV, 
(ER

V + EC
V )/4 = (ε5

R + ε6
R)/2 = 54.0 µeV, ε3

R = −4.8 µeV, 
and ε4

R = 5.2 µeV.
In total we extract the valley splittings 

EL
V = 2ε2

L − 2ε1
L = 77.8 µeV, EC

V = 2ε3
L − 2ε1

L = 98.3 µeV, 
and ER

V = 2ε3
R − ε1

R − ε2
R = 118.4 µeV which deviate less 

than 1% from the single electron estimations. They are again 
roughly 2% smaller than the input settings ẼL

V = 80 µeV, 
ẼC

V = 100 µeV, and ẼR
V = 120 µeV which we again attribute 

to the deformation of energy levels. Finite two-body interac-
tions like valley singlet-triplet coupling may explain the sys-
tematic difference (ε2

L − ε1
L)− (ε4

L − ε3
L) ≈ 0.5 µeV which in 

the non-interacting case should be zero.
For the extraction of the valley phase one can proceed as 

in the single electron case. A fit of the peak intensity or using 
spectroscopy yields information about tL, t′L, tR, and t′R. The 
two valley phases are then given by θLC = arctan |t′L/tL| and 
θRC = arctan |t′R/tR|.

2.3. Three electrons in a TQD

In practice studying the three-electron case is more interesting 
since it allows one to measure the valley splitting and valley 
phase in the same charge configuration regime spin qubits can 
be implemented, i.e. three spin-1

2 qubits or a exchange-only 
qubit are implemented in the (1,1,1) charge regime. The total 
Hamiltonian of the three-electron case is given by

H3e = Hcharge,3e + Hvalley,3e + HZeeman,3e + Htunnel,3e� (50)

which can be obtained from the Hamiltonian (9) with N  =  3. 
Focusing only on the (2,0,1), (1,1,1), and (1,0,2) charge con-
figuration regime where the resonant exchange (RX) qubit is 
typically realized, the charge Hamiltonian can be simplified to

Hcharge,3e =



ε− εM 0 0

0 0 0
0 0 −ε− εM


+ 3εg13� (51)

containing the electrostatic interactions from the capacitor 
model. The detuning parameters ε and εM are (up to a con-
stant energy shift) identical to equations  (39) and (40). We 
choose the average detuning εg such that the TQD is occupied 
by three electrons. The left-center and right-center detuning 
parameters, εL and εR, then allow us to investigate the (2,0,1)-
(1,1,1) and (1,0,2)-(1,1,1) charge transitions. Analogously to 
the single-electron case, the dynamics is effectively reduced 
to an DQD filled with two electrons.

2.3.1.  Extracting the valley splitting and phase.  The val-
ley degeneracy effectively creates eight copies of the charge 
states, two from the valley degree of freedom in each dot for 
the (1,1,1) configuration and two copies for the (2,0,1) and 
(1,0,2) configuration neglecting the spin. These states are 
coupled by the valley non-conserving tunnel matrix elements. 
Therefore, instead of a single anti-crossing between charge 
states we expect to see (in the ideal case) 16 anti-crossings 
between the (2,0,1)-(1,1,1) and (1,0,2)-(1,1,1) charge states. 
Of course, to observe all crossings requires a temperature or 

bias such that the excited states are populated. In figures 5(a) 
and (b) the phase shift of the cavity signal for three electrons 
is shown as a function of the two detuning parameters ε, εM. 
At the (2,0,1)-(1,1,1) and the (1,0,2)-(1,1,1) charge transitions 
we could potentially see the splitting of a single line into mul-
tiple lines. The asymmetry in brightness between the (2,0,1)-
(1,1,1) and the (1,0,2)-(1,1,1) charge transitions is due to 
different energy detunings ∆ = |(E2 − E1)− �ωres| for the 
left and right charge transitions.

A cut along the left-center detuning εL provides informa-
tion about the level splittings (see figure  5(c)). The ground 
state in the (1,1,1) regime is a polarized valley state, where 
all electrons occupy the lower valley state, and in the (2,0,1) 
charge regime the two electrons form a valley-singlet 
state and the remaining electron in the right dot occu-
pies the ground state. The respective energy level crossing 
occurs at εL = −(EL

V + EC
V )/4. From figure  5(c) we find 

ε1
L = −(EL

V + EC
V )/4, ε2

L ≈ ε3
L ≈ 0, and ε1

L = (EL
V + EC

V )/4 
which are all consistent with the extracted valley splitting in 
the single electron case.

A cut along the right-center detuning εR between (1,0,2) and 
(1,1,1) charge states shows similar features (see figure 5(d)). 
The respective energy crossing occurs at εR = −(ER

V + EC
V )/4 

and we find again two surrounding peaks at ε1
R and 

ε2
R. From figure 5(d) we find −(ER

V + EC
V )/4 = (ε1

R + ε2
R)/2, 

ε3
R ≈ ε4

R ≈ 0, and (ER
V + EC

V )/4 = (ε5
R + ε6

R)/2. This matches 
with the results in the single and two electron case.

While our proposed setup does not allow a further invest
igation of the higher valley states since in order to occupy 
the states temperatures exceeding 1K or a voltage bias of 
∆V > 0.3 meV needs to be applied, we have showed that the 
occupation of these states is not necessary in order to extract 
the valley splitting.

3.  Conclusion and outlook

In this paper we have theoretically investigated the response 
signal of a probed microwave resonator coupled to a linearly 
arranged TQD via the center dot gate electrode. A realistic 
model of the TQD is used in our analysis which includes elec-
trostatic cross-talk between the dots and gates via a capacitor 
model, valley and spin effects, and the solution of a Redfield 
master equation to find the occupation probabilities. We show 
that a setup consisting of a TQD filled with a single electron 
or two electrons can be used to extract important informa-
tion from the TQD system such as the valley splitting and the 
valley phase. The accuracy of the extracted valley splitting 
and phase becomes higher and the interpretation simpler if 
the TQD is detuned such that one chemical potential is sig-
nificantly increased which reduces the triple dot system to an 
effective double dot. A setup consisting of three electrons in 
a TQD is in principle capable to deliver the same information 
but the larger number of energy levels makes the population of 
the relevant excited valley states and the corresponding inter-
pretation of the signal more difficult.

In summary, we argue that the method described in our 
paper is a step forward towards the long-term goal of extracting 
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the energy spectrum of a multi quantum dot device coupled to 
a resonator via a single quantum dot [70].
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Appendix A.  Secular approximation

In order to compute the occupation of the energy levels we 
relied on the secular approximation. However, since we have 
no all-to-all coupling there are energy levels which do not form 
an anti-crossing. At these points the energy splitting goes to 
zero, |Ei − Ej| → 0, thus, violating the secular approximation. 
The validity of our calculation, however, is unaffected since 
the ratio between the number of valid points NG and detected 
violations NF is small for large sample sizes NS, NG/NF � 1. 
In all simulation we have used NS = 6002 sample points.

Appendix B.  Charge current

As discussed in [49], excited energy states required for read-
out of all relevant system parameters can be populated either 
by increasing the temperature in the system or by applying a 
dc bias voltage. While precise control over the temperature is 
experimentally challenging, biasing the left and right leads is 
not. The charge current from left to right can be given in two 
equivalent forms due to continuity

I = eΓL

∑
m�=n

(cmLn − cnLm) nnLmρm� (B.1a)

= eΓR

∑
m�=n

(cnLm − cmLn) nnLmρm,
� (B.1b)

where summations run for all m and n. The expressions for a 
charge current from right to left is similar. Figure B1 shows 
the charge current for ∆V = ±0.3 mV. A finite current is only 
possible at charge quadruple points [53] where four charge 
configurations intersect which in our case is in the vicinity of 
the triple intersection points εn

Q.

Appendix C.  Simulation parameters

For the simulation in the main text we use the following 
parameters from experiments in undoped Si/SiGe performed 
in a TQD using the gate layout described in [71]. The extracted 
capacitance matrix consisting of the electrostatic capacitances 
between the dots reads

Cdot =




56.2 −5.5 −0.5
−5.5 50.5 −11.7
−0.5 −11.7 59.4


� (C.1)

and the extracted capacitance matrix consisting of the electro-
static capacitances between the dots and the gates reads

Cgate =




−6.9 −2.4 −0.3
−0.15 −5.9 −0.03
−0.4 −3.6 −6.9


 .� (C.2)

The capacitance matrix consisting of the electrostatic capaci-
tances between the dots and the leads is set to

Clead =




40.6 0
13.6 13.6

0 36.4


 .� (C.3)

Figure B1.  Calculated charge current I of the TQD coupled to the microwave cavity for T  =  30 mK and applied voltage bias (a) ∆V = 0.3 
mV and (b) ∆V = −0.3 mV. Here (nL, nC, nR) denotes the occupation of dot i = L, C, R with ni with electrons. The left and right white 
lines are cuts along the DQD detuning parameters εL and εR while keeping εg and the respective orthogonal detuning parameter fixed. The 
black dots mark the triple intersection points εi

Q (black). Note, that in (b) the charge direction is reversed.
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All capacitances are given in units of (aF) attofarad.
The remaining parameters for the simulation are the tun-

neling couplings, t12 and t23, between the dots, the valley-
orbit parameters ∆j = E j

V eiφj in each dot j = L, C, R, the 
incoherent decay rates γc and γv, and the charge dephasing 
rate γdep. The tunneling parameters used in all simula-
tions in the main text are chosen to be t12  =  12.5 µeV and 
t23  =  11.5 µeV. For the valleys splittings we use EL

V = 80 µ
eV, EC

V = 100 µeV, and ER
V = 120 µeV. The relative valley 

phases θLC = φL − φC = 0.23π, θRC = φR − φC = −0.2π, 
and θLR = φL − φR = 0π, where the last phase is undetect-
able in a linear aligned TQD. The decay and dephasing rates 
are set to γc = 0.12 µeV and γdep = 1.2 µeV.
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