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Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field
are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such
experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable
few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the
multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level.
The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse
duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is
squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the
pure vacuum may be traced with subcycle resolution.
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Finite fluctuation amplitudes in the ground state of
empty space represent the ultimate hallmark of the quantum
nature of the electromagnetic radiation field. These vacuum
fluctuations manifest themselves indirectly in a number of
phenomena that are accessible to spectroscopy such as the
spontaneous decay of excited atomic states as well as the
Lamb shift [1] in atoms [2] and in quantum-mechanical
electric circuits [3]. Access to the quantum aspects of
electromagnetic radiation is provided by the analysis of
photon correlation [4,5] or homodyning [6–11] measure-
ments. However, these approaches require amplification of
the quantum field under study to finite intensity and
information is typically averaged over multiple optical
cycles.
On the other side, precise determination of a voltage or

electric field amplitude as a function of time represents a
fundamental task in science and engineering. Optical
techniques have to be applied when detecting electric
fields oscillating in the terahertz (THz) range and above.
Those approaches involve probing with ultrashort laser
pulses of a temporal duration on the order of half an
oscillation period at the highest frequencies under study.
Far-infrared electric transients [12,13] may be character-
ized by photoconductive switching [14]. Electro-optic
sampling in free space [15–17] allows field-resolved
detection at high sensitivity in the entire far- and midin-
frared spectral range [18,19]. Direct studies of the complex-
valued susceptibilities of materials and the elementary
dynamics in condensed matter are performed with these
methods [20,21]. The time integral of near-infrared to
visible electric-field wave packets is accessible with
attosecond streaking [22]. So far, all those techniques
were restricted to the classical field amplitude. Very
recently, direct access to the vacuum fluctuations of the
multi-THz electric field has been established experimen-
tally [23].

In this Letter, we demonstrate theoretically that the
quantum properties of light may be accessed directly in
the time domain, i.e., with subcycle temporal resolution.
Our considerations are based on the realistic example of
electro-optic detection with zinc-blende-type materials
[24]. Even vacuum fluctuations may be sampled without
amplification by broadband probing of electric field ampli-
tudes in the multi-THz region with few-femtosecond laser
pulses of moderate energy content.
We consider the geometry sketched in Fig. 1. An

ultrashort near-infrared (NIR) wave packet with electric
field Ep propagates along the [110] axis of an electro-optic
crystal (EOX) [24,25]. Its wave vector kω is perpendicular
to the z axis ez of the EOX. We select Ep∥ez [26]. In this
configuration, the second-order nonlinear mixing of EpðtÞ

FIG. 1 (color online). Setup and geometry for free-space
electro-optic sampling. (a) The incoming near-infrared (NIR)
probe and multi-THz signal fields mix in the electro-optic crystal
(EOX). The NIR (blue) spatial mode amplitude is depicted by the
contour plot, whereas a THz (red) spatial mode is indicated by
wave fronts. Bottom left corner: temporal profiles of the NIR
intensity envelope INIRðtÞ and a representative multi-THz vac-
uum field ETHzðtÞ. After collimating with a lens (L), the modified
NIR field is analyzed using a quarter-wave plate ðλ=4Þa,
a Wollaston prism (WP), and balanced detectors (Ds, Dz)
measuring the difference in photon flux of the split components.
(b) Spatial directions determining the electro-optic effect in a
zinc-blende-type EOX and the following ellipsometry analysis.
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with an incident THz field ÊTHzðtÞ induces nonlinear
polarization in the EOX plane with the components [26]

P̂ð2Þ
s ðtÞ ¼ −ϵ0dÊTHz;sðtÞEpðtÞ; P̂ð2Þ

z ðtÞ ¼ 0: ð1Þ

ϵ0 is the vacuum permittivity. The coupling constant d ¼
−n4r41 can be determined from the electro-optic coefficient
r41 and refractive index (RI) n at the center frequency ωc

of Ep [32–34]. In general, both fields ÊTHz ≡ ÊTHz;s and

P̂ð2Þ
s in Eq. (1) are quantized, whereas Ep ¼ Ep;z ¼ hÊp;zi

denotes the classical part of the probe field. We neglect the
effect of quantummechanical fluctuations of the probe field
on P̂ð2Þ, assuming a sufficiently large Ep.

The nonlinear polarization P̂ð2Þ represents a source in the
inhomogeneous wave equation describing the evolution of
the electric field Ê in the EOX. The fields F̂ ¼ Ê; P̂ð2Þ

propagating in the forward direction r∥ (see Fig. 1) can be
decomposed as F̂ðr; tÞ ¼ R

∞
−∞ dωF̂ðr;ωÞeiðkωr∥−ωtÞ, where

kω ¼ ωnω=c0. c0 and nω are the velocity of light and the
frequency-dependent RI of the EOX, respectively. Using
the paraxial approximation [35,36], the inhomogeneous
wave equation reads

�
Δ⊥ þ 2ikω

∂
∂r∥

�
Êðr;ωÞ ¼ −

ω2

ϵ0c20
P̂ð2Þðr;ωÞ; ð2Þ

where r⊥ ¼ ðrs; rzÞ and Δ⊥¼ð∂2=∂r2sÞþð∂2=∂r2zÞ. From
Eq. (1) we obtain P̂ð2Þ

s ðr;ωÞ¼−ϵ0d
R∞
−∞dΩÊTHzðr;ΩÞ×

Epðr;ω−ΩÞeiðkΩþkω−Ω−kωÞr∥ . The electric field of the probe
beam provides a solution of the homogeneous part of
Eq. (2) which can be expanded into Laguerre-Gaussian
(LG) modes [37,38] (see Ref. [26]). We adopt a probe pulse
train with a fundamental Gaussian transverse mode of
amplitude αpðωÞ:

Epðr;ωÞ ¼ αpðωÞLG00ðr⊥; r∥; kωÞ: ð3Þ

A length l of the EOX much shorter than the Rayleigh
range of a beam at the relevant THz frequencies Ω with
waist size w0 is assumed, i.e., l ≪ kΩw2

0=2.
The EOX is located at the beam waist r∥ ¼ 0. It has

antireflection coating on its surfaces. Denoting F̂ðr⊥;ωÞ≡
F̂ðr⊥; r∥ ¼ 0;ωÞ we find that at the exit from the EOX,
r∥ ¼ l=2, the total electric field in the (110) plane is
given by

Ê0ðYÞ ¼ EpðYÞez þ Êð2ÞðYÞes þ δÊ0ðYÞ; ð4Þ

whereY ≡ fr⊥;ωg. δÊ0ðYÞ ¼ ÊpðYÞ − EpðYÞez denotes
the contribution of the vacuum field at the probe frequency
ω in the vacuum picture [39]. The correction to the probe
field generated in the EOX is evaluated as

Êð2Þðr⊥;ωÞ¼
Z

∞

−∞
dΩÊTHzðr⊥;ΩÞEpðr⊥;ω−ΩÞζω;Ω; ð5Þ

where the factor ζω;Ω ¼ −idðlω=2c0nÞsinc½ðlΩ=2c0Þ×
ðnΩ − ngÞ� determines phase matching. Here sincðxÞ≡
sinðxÞ=x, nΩ is the RI at Ω, whereas n and ng are the
RI and the group RI c0∂kω=∂ω at ω ¼ ωc, respectively.
Going beyond Ref. [17] where an expression similar to
Eq. (5) was derived for the case of plane waves in order to
establish a classical theory of electro-optic sampling,
Eqs. (4) and (5) include the transverse spatial dependence
of the fields, the quantized form of the signal, as well as the
contribution of quantum fluctuations at the probe frequen-
cies. These points are crucial for our further analysis.
From Eq. (4) we see that nonlinear mixing of the probe

and THz components generates a new field which is
polarized perpendicularly to the probe and propagates
into the same direction. For the analysis of the polari-
zation state of the modified probe, we consider the field
components in the coordinate frame ea

b
¼ ðez ∓ esÞ=

ffiffiffi
2

p
rotated by 45° with respect to the ez;s frame [Fig. 1(b)],
Ê0

a
b
ðYÞ ¼ EpðYÞ½1� iϕ̂ðYÞ�= ffiffiffi

2
p þ δÊ0

a
b
ðYÞ. Here ϕ̂ðYÞ ¼

iÊð2ÞðYÞ=EpðYÞ must be small within the frequency
bandwidth of the probe.
The ellipsometry scheme used in typical experiments is

explained in Fig. 1(a). We consider its effects at the exit
surface of the EOX. This simplification is justified when all
probe photons are detected without spatial filtering. The
quarter-wave plate shifts the phase of the a component of
the field by π=2: Ê00

aðYÞ ¼ iÊ0
aðYÞ, Ê00

bðYÞ ¼ Ê0
bðYÞ.

Subsequently, the Wollaston prism splits the electric field
into its z and s components:

Ê00
z
s
ðYÞ ¼ e�iðπ=4ÞEpðYÞffiffiffi

2
p ½1 ∓ ϕ̂ðYÞ� þ δÊ00

z
s
ðYÞ: ð6Þ

Finally, the photon numbers in both components are
detected and subtracted. The photon number operator for
the polarization α ¼ z; s reads [40]

N̂ α ¼ C
Z

∞

0

dω
ηðωÞ
ℏω

Z
d2r⊥Ê00†

α ðr⊥;ωÞÊ00
αðr⊥;ωÞ; ð7Þ

where C ¼ 4πc0nϵ0, the dagger denotes Hermitian con-
jugation and the spatial integral covers the entire transverse
profile of the probe beam. The frequency-dependent
quantum efficiency of the photodetector ηðωÞ ≈ 1 over
the detected frequency range but vanishes quickly for
ω → 0.
Inserting Eq. (6) into Eq. (7) and neglecting the second-

order terms in δÊ00 as well as the mixed terms depending
linearly both on δÊ00 and on ÊTHz (contained in ϕ̂) [42], the
total detected quantum signal becomes

PRL 115, 263601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

263601-2



Ŝ ≡ N̂ s − N̂ z ¼ ŜEO þ ŜSN: ð8Þ

Here, the electro-optic signal (EOS) ŜEO is

ŜEO¼C
Z

d2r⊥
Z

∞

0

dω
ηðωÞ
ℏω

jEpðYÞj2½ϕ̂ðYÞþH:c:� ð9Þ

and the shot noise (SN) contribution ŜSN reads ŜSN ¼
C
R
d2r⊥

R
∞
0 dω½ηðωÞ=ℏω�½E�

pðYÞδÊ00þðYÞ þ H:c:�. H:c:

denotes the Hermitian conjugate and δÊ00þðYÞ ¼
eiπ=4½δÊ00

s ðYÞ þ iδÊ00
z ðYÞ�= ffiffiffi

2
p

is the circular component
of the vacuum contribution of the probe field [43].
Summing up the signals from both detectors, the expect-
ation value of the number of detected photons per probe

pulse N ¼ hN̂ s þ N̂ zi ¼ ð4πc0nϵ0=ℏÞ
R
∞
0 dω½ηðωÞ=ω�×

jαpðωÞj2 results.
Using Eqs. (3) and (5) in Eq. (9), we obtain

ŜEO ¼ dlNωp

c0n

Z
d2r⊥g200ðr⊥Þ

Z
∞

−∞
dΩÊTHzðr⊥;ΩÞRðΩÞ:

ð10Þ
g00ðr⊥Þ≡LG00ðr⊥; r∥ ¼ 0;kωÞ ¼

ffiffiffiffiffiffiffiffi
2=π

p
w−1
0 expð−r2⊥=w2

0Þ
is a normalized Gaussian independent of ω and
ωp ¼ R

∞
0 dωηðωÞjαpðωÞj2=

R
∞
0 dω½ηðωÞ=ω�jαpðωÞj2 is the

average detected frequency. We have introduced the
response function RðΩÞ ¼ sinc½ðlΩ=2c0ÞðnΩ − ngÞ�fðΩÞ
with the normalized Hermitian spectral autocorrelation
function fðΩÞ ¼ ½f�þðΩÞ þ f−ðΩÞ�=2, where f�ðΩÞ ¼R∞
0 dωηðωÞα�pðωÞαpðω�ΩÞ=R∞

0 dωηðωÞjαpðωÞj2.
Within the paraxial quantization [38], ÊTHzðr⊥;ΩÞ

in Eq. (10) is given by [26]

ÊTHzðr⊥;ΩÞ ¼ −i
X
l;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏΩ

4πϵ0c0nΩ

s
âs;l;pðΩÞg0lpðr⊥Þ ð11Þ

for Ω>0, ÊTHzðr⊥;Ω<0Þ¼ Ê†
THzðr⊥;−ΩÞ. Here, âs;l;pðΩÞ

annihilates a photon with frequency Ω, orbital quantum
numbers l; p, and polarization es. We have introduced the
transverse mode functions g0lpðr⊥Þ≡LGlpðr⊥; r∥ ¼ 0;kΩÞ.
In contrast to the probe beam, the waist size w0

0 character-
izing these mode functions is a free parameter of the
expansion (11). Inserting Eq. (11) into Eq. (10) and
selecting w0

0 ¼ w0=
ffiffiffi
2

p
, we can evaluate the spatial integral

using
R
d2r⊥g200ðr⊥Þg0lpðr⊥Þ ¼ ð1= ffiffiffi

π
p

w0Þδl;0δp;0. Then we
obtain from Eq. (10)

ŜEO ¼−i
ffiffiffiffi
B

p Z
∞

0

dΩ

ffiffiffiffiffiffi
Ω
nΩ

s
½âs;0;0ðΩÞRðΩÞ−H:c:�; ð12Þ

where B ¼ ðd2l2N2ω2
pℏÞ=ð4π2ϵ0c30n2w2

0Þ.
As an input, we now consider a THz quantum field with

no coherent (classical) contribution: hÊTHzi¼0, e.g., a bare

multi-THz vacuum. Then hŜi¼ 0 since hŜSNi¼ 0 and ϕ̂ in
Eq. (9) depends linearly on ÊTHz, thus also hŜEOi¼0.
However, the variance of the signal does not vanish. If the
range of detected THz frequencies, determined by RðΩÞ,
does not overlap with the frequency content of the probe
beam, the signal variance hŜ2i− hŜi2¼hŜ2i can be written
as hŜ2i ¼ hŜ2

EOi þ hŜ2
SNi. Calculating the SN contribution

using the paraxial quantization [38], we obtain the expected
result hŜ2

SNi ¼ N.
Evaluating hŜ2

EOi for the multi-THz vacuum yields

hŜ2
EOi ¼ N2

�
n3

lωp

c0
r41

�
2 ℏ

R∞
0 dΩΩðn=nΩÞjRðΩÞj2

4π2ϵ0c0nw2
0

;

ð13Þ
where we have used hâs;0;0ðΩÞâ†s;0;0ðΩ0Þi ¼ δðΩ −Ω0Þ.
Note that the expectation values of all other possible
quadratic combinations of â†s;0;0 and âs;0;0 vanish. The first
two factors on the right-hand side of Eq. (13) determine the
sampling efficiency. The fundamental physics is contained
in the third factor representing the variance of the multi-
terahertz vacuum field ðΔEÞ2 ¼ ℏ=ðϵ0ΔxΔyΔzΔtÞ. The
transverse area ΔxΔy is set by the cross section of the
sampling mode which is proportional to w2

0. The ratio of c0
to the integral containing the response function RðΩÞ
determines the longitudinal cross-sectional area. It corre-
sponds to the effective spatial length Δz times the temporal
duration Δt of the sampling pulse which become modified
by the phase-matching conditions and renormalized due to
the refractive index nΩ inside the EOX. Consequently,
hS2

EOi may be modulated in an experiment by lateral or
transverse expansion of the four-dimensional space-time
volume over which the probe pulse averages while keeping
hS2

SNi exactly constant [23].
To illustrate the results, we assume the following realistic

specifications of the sampling few-femtosecond NIR laser
pulse: center frequency 255 THz, spectral bandwidth
150 THz with rectangular spectral shape and flat phase,
leading to ωp ¼ 247 THz, and waist size w0 ¼ 3 μm [44].
We consider a l ¼ 7 μm thick ZnTe EOX with r41 ¼
4 pm=V [45,46], n ¼ 2.76, ng ¼ 2.9, and nΩ varying only
slightly (from 2.55 to 2.59) for the relevant THz frequen-
cies [26]. The resulting integrand function entering Eq. (13)
is shown in Fig. 2(a) (for details, see Ref. [26]). Diffraction
effects are taken into account by excluding wavelengths λ
with λ=ð2nΩÞ > w0.
Based on this input, we calculate the dependence of the

rms value of the signal ΔS ¼ hŜ2i1=2 on the average
number N of photons in the sampling NIR pulse, as shown
in Fig. 2(b) on a double-logarithmic scale. Above a certain
N, the EOS contribution of the multi-THz vacuum
changes the typical SN scaling. The relative increase of
the rms value of the signal with respect to the SN level,
ðΔS − ΔSSNÞ=ΔSSN, is depicted in Fig. 2(c) for moderate
N and with linear scaling. For even higher N, the vacuum
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contribution starts to dominate so that the dependence
saturates to the constant EOS level [Fig. 2(b)]. Subtracting
the SN contribution from the total signal variance, the bare
EOS variance induced by the sampled quantum field can be
analyzed.
To elaborate on this point, we apply our theory to a

multi-THz vacuum which is squeezed in an interval around
a center frequency Ωc. The corresponding state of light is
generated by the continuum squeezing operator [47–49]
expf1

2

R 2Ωc
0 dΩ

P
αlp½ξ�Ωâα;l;pð2Ωc − ΩÞâα;l;pðΩÞ − H:c:�g

acting on the multi-THz pure vacuum (PV) state considered
above. The frequency-dependent squeezing parameter ξΩ
satisfies the condition ξΩ ¼ ξ2Ωc−Ω. We assume that all
spatial and polarization modes are squeezed equally. In this
case, the EOS can be obtained from Eq. (12) transforming
âs;0;0ðΩÞ→ âs;0;0ðΩÞ cosh rΩ − â†s;0;0ð2Ωc −ΩÞeiθΩ sinh rΩ
[47–49] and working in the vacuum picture. The expect-
ation value of the signal remains zero. Evaluation of the
EOS variance for the squeezed vacuum (SV), hŜ2

EOiSVðτÞ,
is analogous to the PV case. However, the SV EOS variance
depends on the time delay τ of the NIR probe pulse leading
to the transformation RðΩÞ → RðΩÞe−iΩτ of the response
function. This fact was unimportant for handling the
PV [cf. Eq. (13)]. For a probe pulse symmetric with respect
to t ¼ τ, i.e., Epðt − τÞ ¼ Epðτ − tÞ, we find RðΩÞ ¼
R0ðΩÞe−iΩτ, where R0ðΩÞ is real-valued.
For our illustration, we assume constant squeezing with

ξΩ ≡ ξ ¼ reiθ in the frequency range ½Ω1;Ω2� with
Ωc ¼ ðΩ1 þ Ω2Þ=2, where r ¼ jξj is the squeeze factor
[50,51] and θ ¼ ArgðξÞ is the squeezing phase [48].
No squeezing occurs outside this range. In particular, we
use Ωc=ð2πÞ ¼ 40 THz, Ω2 − Ω1 ¼ Ωc and sinh r ¼ 2
[see Fig. 3(a)]. Generalized quadrature operators [47]
X̂λ ¼ ½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΩ2 −Ω1Þ
p � RΩ2

Ω1
dΩ½âs;0;0ðΩÞe−iλ þ H:c:�, with

X̂ ¼ X̂0 and Ŷ ¼ X̂π=2, normalized so that ½X̂; Ŷ� ¼ i are
introduced. The error contours for PVas well as for the SV

as described above and two different squeezing phases,
θ ¼ 0 and θ ¼ π, are featured in Fig. 3(b). The dependence
of the normalized EOS variance hŜ2

EOiSVðτÞ=hŜ2
EOi, where

hŜ2
EOi is given by Eq. (13), on the time delay τ is shown in

Fig. 3(c) for the same states as in Fig. 3(b) and sampling
parameters used for the PV case. For specific delay times,
the EOS variance of the multi-THz SV is by 64% lower
than the unsqueezed value of the PV state (for details,
see Ref. [26]).
We emphasize the cardinal difference between our

findings and similar-looking results obtained in the context
of homodyning [52,53]. In homodyning experiments, the
signal is determined by the temporal overlap integral of the
complex amplitudes of the electric fields of an input state
and a local oscillator; i.e., the information is typically
averaged over multiple oscillation cycles of light. In
contrast, electro-optic sampling provides a true subcycle
resolution of the probed multi-THz electric field. Moreover,
registration of photons is transferred into the NIR, circum-
venting the lack of efficient single-photon detectors in the
multi-THz frequency range. Most importantly, the multi-
THz quantum field may be studied without the necessity to
reduce or amplify its photon content—even if it remains in
its ground state. For a detailed discussion, see Ref. [26].
In conclusion, we theoretically clarify the contribution of

the quantum fluctuations of the multi-THz vacuum electric
field to the signal in ultrabroadband electro-optic sampling
by differentiating it from the trivial shot noise of the high-
frequency gating pulse. The crucial aspects are a strong
localization of the sampling beam in space and time as it
passes the nonlinear crystal, a large second-order nonlinear
coefficient and proper phase matching that might be further
optimized selecting an even more appropriate material than
the thinpiece ofZnTewehave considered as an example [23].
For amulti-THz squeezed vacuum, the possibility to trace the

FIG. 2 (color online). (a) Calculated integrand function
Ωðn=nΩÞjRðΩÞj2 entering Eq. (13). (b) Double-logarithmic plot
of the ratio ΔS=N in dependence on N. The black dotted (red
dashed) line shows the bare SN (multi-THz vacuum) contribu-
tion. (c) Increase of ðΔS − ΔSSNÞ=ΔSSN with N. Parameters are
defined in the main text.

FIG. 3 (color online). (a) Frequency dependence of the squeeze
factor r. Squeezing correlatesΩ and 2Ωc − Ωmodes (as indicated
by arrows). (b) Error contour in the complex-amplitude plane for
PV (gray circle) and SV with θ ¼ 0 (θ ¼ π) [red (green) ellipse
with reduced uncertainty in the phase (amplitude) quadrature Y
(X)]. (c) Normalized (with respect to the constant PV level, solid
black line) EOS variance in dependence on the time delay τ of the
probe NIR pulse for SV with θ ¼ 0 (θ ¼ π) [solid red line
(dashed green line)].
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oscillations of the EOS variance with the time delay of the
probe pulse is predicted. Positions occur where the noise
remains significantly below the level of unsqueezed vacuum.
The same formalism can be applied for the analysis of more
complex quantum fields in a time-resolved and nondestruc-
tive manner. Experimental implementation of these ideas
might open up a new chapter of quantum optics operating
predominantly in the time domain and with subcycle access
to the quantum state of electromagnetic radiation.
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