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In search of two level quantum systems that implement a qubit, the nitrogen-vacancy (NV) center in diamond
has been intensively studied for years. Despite favorable properties such as remarkable defect spin coherence
times, the addressability of NV centers raises some technical issues. The coupling of a single NV center to an
external driving field is limited to short distances, since an efficient coupling requires the NV to be separated
by only a few microns away from the source. As a way to overcome this problem, an enhancement of coherent
coupling between NV centers and a microwave field has recently been experimentally demonstrated using spin
waves propagating in an adjacent yttrium iron garnet (YIG) film [P. Andrich ef al., npj Quantum Inf. 3, 28
(2017)]. In this paper we analyze the optically detected magnetic resonance spectra that arise when an NV center
is placed on top of a YIG film for a geometry similar to the one in the experiment. We analytically calculate the
oscillating magnetic field of the spin wave on top of the YIG surface to determine the coupling of spin waves to
the NV center. We compare this coupling to the case when the spin waves are absent and the NV center is driven
only with the antenna field and show that the calculated coupling enhancement is dramatic and agrees well with

the one obtained in the recent experiment.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV) center in
diamond is an optically active point defect with a ground state
spin triplet, lying deep in the band gap of diamond [1,2].
Its bright optical transition and the existence of intersystem
crossing provides a good mechanism for initialization and
read out of the spin state of the center [3]. The ground state
of the NV center is sensitive to magnetic and electric fields, as
well as to strain [4—6], and thus can be used as a nanosensor
to detect them [7-9]. This makes the NV center extremely
interesting for metrology. Apart from that, the long spin
coherence time of the defect makes it interesting for quantum
information purposes. Its state can efficiently be manipulated
with oscillating magnetic fields that cause transitions between
the levels of the spin triplet. In most of the experiments this
oscillating field was generated by an antenna placed in the
vicinity of the center, which raises the issue of addressability
for many NV centers when the antenna can no longer be
placed close to each of them. Recently an experiment was
reported in which the NV center was placed on top of a
ferromagnetic material (YIG) that can host propagating spin
waves. Using an antenna as a source of the spin waves in
this material, one can couple distinct NV centers to it just like
dialog partners are connected by a signal line. In this work we
theoretically treat the coupling of the spin waves to the NV
centers for a special geometry of the device described below.
We provide an analytical expression for the spin wave field
and determine the coupling enhancement that it produces with
respect to the field of the antenna only, when spin waves are
absent.

II. SETUP

We calculate the effect of spin wave excitation inside
ferromagnetic thin films as used for example in the experiment
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presented by Andrich et al. [10]. The vicinity of a spin wave
hosting material to a quantum system driven by external
microwaves provides an additional component of the driving
field. In that way, spin wave excitation inside a ferromagnetic
material affects the coupling between the driving field and
the given quantum system. In the experimental realization by
Andrich et al. [10] the quantum system consisted of defect
spins inside a collection of nanodiamonds patterned on the
surface of the magnetic material as depicted in Fig. 1(a). A
single nanodiamond, which is selected with the laser focus,
hosts an ensemble of ~500 NV centers with an isotropic
electron g factor of g &~ 2 [2]. The nanodiamond is embedded
in a polydimethylsiloxane (PDMS) film, which is on the top
of a layered structure of YIG and gadolinium gallium garnet
(GGQG). Since YIG is a ferromagnetic material with ultralow
spin wave damping, it is perfect for the usage as the spin
wave medium. An ac current flowing through a microstrip
line (MSL) deposited on the surface of the YIG generates
a microwave driving field, penetrating through the different
materials and denoted as the antenna field in Fig. 1(a). Due
to the vicinity of the NV centers to the YIG surface, the
defect spins are not only sensitive to the antenna field, but
also to the stray field originating from the magnetic YIG
film. For a theoretical description of the system we use the
coordinate system and the defining parameters sketched in
Fig. 1(b). Choosing the YIG film to have a thickness d and
to lie in the xy plane, the MSL orientation can be set as
the y axis and the MSL position marks the origin of the
coordinate system. Furthermore, the MSL has a width w
and the probed nanodiamond is located in the xz plane at
xnv. Based on realistic dimensions of experimental systems,
some assumptions concerning the boundary conditions of the
system are reasonable. In Ref. [10] the YIG film is only
3.08 pum thick, which is very thin compared to its dimensions
of about 10 mm along the x and y axes [10]. Thus, the film

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195413&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1103/PhysRevB.99.195413

MUHLHERR, SHKOLNIKOV, AND BURKARD

PHYSICAL REVIEW B 99, 195413 (2019)

FIG. 1. (a) Electron spin resonance in NV spins driven by spin waves demonstrated by Andrich et al. [10]. An array of nanodiamonds
is patterned inside a PDMS film layered on top of a YIG thin film. From a distant MSL deposited on the YIG the antenna field propagates
through the PDMS and couples to the NV centers. Inside the YIG the microwave excitation by the MSL leads to spin waves propagating in the
plane. Due to the given dimensions, the theoretical treatment can be reduced to a two-dimensional coordinate system as shown in (b), which
is a cross section of the setup in (a). The layered structure lies in the xy plane and the center of the MSL of width w marks the origin of the

coordinate system and is oriented along the y direction.

can be assumed to be infinite in the xy plane. The GGG
substrate and the PDMS layer are a few hundreds of um thick,
so that they are treated as infinite in the z direction and the
only boundary conditions to be fulfilled are those at the YIG
interfaces, where both surrounding layers in regions I and III
are approximated as nonmagnetic. This assumption is justified
due to their magnetic permeabilities being isotropic and close
to 1 [11,12]. The MSL has a width of w =5 um, making
its height of about 200 nm negligible. Overall, due to the
spatial expansion of the system along the y direction and the
invariance of the system under y translation, we assume that
all fields are independent of y and the problem is treated in
two dimensions.

III. DRIVEN SPIN WAVES

In order to calculate the spin wave spectrum of a ferromag-
netic thin film and the resulting field amplitude, we start from
Maxwell’s equations (MEs). If there is an external magnetic
H field, a magnetization field M is built up in the magnetic
film. In general, the external H field can be decomposed
into a static part Hy and a time-dependent component h(t)
originating from the microwave antenna field. Consequently,
the magnetization inside the material depends on the driving
frequency w and will also have a time-dependent component
m(t). The relation between both time-varying components is
given by the constitutive equation m = Xh, where material
properties and the geometry of the system enter via the
susceptibility tensor X. In case of a strong static bias field
H, along the y direction, the magnetic film is tangentially
magnetized and the static component of magnetization M
saturates. Under these conditions, X takes the form of the
Polder susceptibility

x 0 —ix
XxX=[0 1 o0 |, (1)
ik O X

with the frequency-dependent entries x = wwy /(wf — @)
and k = wowy /(w3 — @?) [13]. The parameters wy = y woHo
and wy; = Yy uoMs account for the characteristics of the ma-
terial in an external field Hy. Here y and My denote the gy-
romagnetic ratio and the saturation magnetization of the film
and po denotes the vacuum permeability. Using the Polder
tensor (1) and assuming the electric permittivity of the ma-
terials to be 1 for simplicity, the single components of the

four MEs in two dimensions form a system of eight coupled
differential equations for the magnetic and electric field com-
ponents H;(x, z) and E;(x, z) (i = x, y, z) in each region I-III
in Fig. 1(b). Since the MSL is located right at the PDMS-YIG
interface and is assumed to be infinitesimally thin, the flowing
current is nonzero only at the boundary between the two upper
layers I and II, whereas inside the bulk regions there are
no free currents j flowing, and thereby, no additional source
terms. Referring to that, the fields inside the bulk regions I-III
are obtained by solving the system of homogeneous MEs with
J = O separately and the MSL current is included by matching
the boundary conditions at z = 0 and z = —d afterwards.

Performing a one-dimensional Fourier transform with re-
spect to the x coordinate yields a system of ordinary differ-
ential equations in the k,z space, where only one equation
actually has to be solved,

32H, (ky, 7) + a*Hy(ky, 7) = 0, 2

where a® = [(1 + x)* — k2]k3/(1 + x) — k? and ko = w/c.
The other nonzero field components H.(ky, z) and Ey(ky, 2)
can be expressed in terms of the solution H,(k,, z) of (2) and
its derivative 9,H, (ky, 2),

iKkng(kxv 7) — ik 0 Hy(ky, 2)
2=+ 0k
w .
Ey(ke,2) = k_(lKHx(kxs )+ A+ 0H ke, 2). (D)

X

H(ky, 2) = ; 3

Since the PDMS as well as the GGG layer are assumed to
be infinite in positive and negative z direction, there are no
incoming waves in these regions, which could be caused by
reflections at any surfaces. Thus, the ansatz

Hl(ke,2) = Cres,

H;I(kx, Z) — C2 eiaYIGZ + C3 e*iaY[GZ’

HM (ke 2) = Gy, )
is chosen, where the superscripts I-III refer to the regions
and a' corresponds to a in (2) in the corresponding material
i. In order to obtain the actual amplitude of the magnetic field,
the coefficients C;—C,4 have to be derived, so there is need to
include existing boundary conditions, which arise at the two
interfaces. In the absence of any surface currents, the parallel
component of the H field and the orthogonal component of
the B field are continuous at an interface. But since this is
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only the case for the lower interface at z = —d, the upper
boundary condition for the parallel H-field component has
to be considered more carefully. The field component H, is
not continuous at z = 0, where the step between both regions
equals the current density at the boundary. Hence, the proper
boundary condition at the I and II interfaces is

H}(ke, 0) — H'(ky, 0) = j(ky, y) (6)

in the k,z space. The current density function j(x,z) de-
scribes the total current Iy flowing through the infinites-
imally thin MSL of width w, which can be expressed
as j(x,z)=Il/wd(w/2 —x)0(x + w/2)é(z) and the cor-
responding Fourier transform is j(k,, z) = jo sin(k,w/2)/k,
with jo = (2/m)"/?Iy/w. Combining this discontinuity of the
parallel H field at the upper interface with the known conti-
nuity condition at the lower interface and the continuity of the
orthogonal B field at both interfaces provides four boundary
conditions in total. Inserting the ansatz (5) finally leads to a

J

system of linear equations determining the coefficients C;—Cy.
As long as the interacting quantum system is located above the
magnetic thin film, we only require the solution for positive z
values, so that only the field amplitude in region I is playing
a role for any coupling processes. Hence, it is sufficient to
concentrate only on the coefficient C;. The system of equa-
tions can be further simplified by introducing approximations
relying on the realistic experimental values [10]. A typical
saturation magnetization Mg of the ferromagnetic material
is of the order of 10° G and is achieved in an external
magnetic field By of ~10? G. Hence, the assumption o < w?
is justified for microwave excitation frequencies w in the GHz
range and susceptibility parameters x and « of the order of
10~! and 10°. Furthermore, the wave vectors of microwaves
of about ky &~ 10! m~' in vacuum are much smaller than the
experimental wave vectors k, ~ 10° m~!, i.e., k3 < k2. Under
these conditions, the parameter a in (2) can be approximated
independently from the material as a"MS &~ 960 ~ Y10 ~
ik,. Hence, the result for C; only depends on k,,

Ci(ky) ~ jo

The full solution for the magnetic field H in the region I is
given by

1
(HX) ~ <1>C1 (k) e ™™ = G)Hl(kx,z)/«/i, (8)

H! i
where the amplitude function H'(k,, z) is introduced. From
Eq. (8) as a function of k, and z, the excited spin wave modes
inside the ferromagnetic film, i.e., the spin wave resonance
condition, can be derived by determining the zeros of the
denominator. This yields the dispersion relation

wilk) = 1/ Qw0 + wu)? — e ©

that matches exactly the so called Damon-Eshbach surface
waves (DESW), which were calculated for ferromagnetic thin
films in the absence of any surface currents [14]. Hence,
the solution of the modified system with nonzero current
is peaked around the DESW modes, which is reasonable
against the background of made approximations. Assuming
large wave numbers k,, i.e., k, > ko, the current function
J(ky, 2) ~ sin(k,w/2)/k, decreases in amplitude, so that the
result for the resonance condition is identical to the DESW
modes within the given approximation.

An important feature of the calculated spin wave modes is
that for large k, the frequency in (9) saturates to a value that
depends on the external magnetic field By. Thus, at a fixed
magnetic field, spin wave excitations are limited to a fixed
range of frequencies between the limiting cases k, = 0 and
k, — o0,

Voolwo +oy) < o < wy+ wy/2. (10)

The lower bound at k, = O corresponds to the so called uni-
form precession mode, where all the spins inside the material

sin(k,w/2) wy(wo + wy + w) — e (o + wy — ©)Rwo + wy + 20)
ky i, + ed[4a? — 2wy + wy)?] ’

(N

(

precess in phase, so that there is an oscillating magnetization,
but no spatial propagation. Even in a strong external magnetic
field of 200 G as used, for example, in the reported experiment
[10], the uniform precession mode of the considered YIG film
oscillates at about 1.6 GHz, which is far too small to stimulate
magnetic dipole transitions in the spin triplet of the NV center.
In contrast, the upper limit wi* = wo + wyr/2 is reached for
the same magnetic field at ~3.1 GHz, which lies, for example,
in the range of NV resonances, as will be important later.

After deriving the driven spin wave modes, we are inter-
ested in the real space solution of the magnetic field, to finally
model the interaction with an NV ensemble and to give a
quantitative expectation of the coupling strength. Therefore,
the magnetic field H' in (8) has to be Fourier transformed back
into real space using the explicit form of the coefficient C; (k)
in (7). The field can be written as

1
H'(x,2) = (l.)H‘(x, D/IV2, (1D
with the Fourier transform of the amplitude function
I 1 g ik
H(x,z) = / H(ky, 2) ™" dk,. (12)
A/ 21w J-co ! !
In order to calculate this integral, the denominator in (7)

is expanded to first order in k, around its zero k;, which
corresponds to the resonant wave number defined by (9)

13)

K= (- Ol .

2d 4% — Qwg + wpr)?
The remaining integral can be analytically evaluated by
assuming that before the current in the MSL was switched

on there were no spin waves. This imposes the rule how
to go around the pole in the integral above. Applying the
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FIG. 2. Magnetic field amplitude depending on the microwave frequency w at fixed external field By = 50 G. The field amplitudes are
normalized to the applied current per unit length Iy /w. (a) The wide range plot shows the step behavior at the upper bound w’* of spin wave

sw

excitation. (b) Magnification of the range around the step frequency indicated by the black rectangle in (a), which resolves a sharp decrease in
the amplitude at @, . (c) Further magnification shows a second amplitude dip at @, , below 0™ = 2.73 GHz.

Sokhotski-Plemelj theorem in case of a real line integral
and restricting ourselves to the far field regime, where the

J

sSw?

condition x > (k, — k)’c)’1 holds, the amplitude function
H'(x, z) in real space is

—2k.d

1 ~
H(X’Z)N’ﬁw k.d

which is one of our main results. Clearly the absolute value
of the field does not depend on x in our model. This is true as
long as we can neglect diffraction effects, which arise due to
the finite length of the MSL. In analogy to optics, diffraction
can be neglected provided that x < I/, where [ is the length
of the MSL and X is the wavelength of the spin wave. In the
experiment of Ref. [10] the length of the MSL was 200 um,
while the wavelength was on the order of 1 um. That leaves
us with the condition x < 40 mm, which is fulfilled for the
samples used in the experiment of Ref. [10], and which we
assume to hold in our theory. Based on this complex field
amplitude, the magnetic field above the ferromagnetic film is
known explicitly. The factor in front of the square brackets
in Eq. (14) takes into account the geometry of the MSL. The
expression inside the square brackets describes the frequency
dependence of coupling between the current in the MSL and
the spin wave mode of a given frequency, which cannot be
predicted solely based on the Damon-Eshbach spectra. Note,
however, that the calculated solution only holds for frequen-
cies within the range (10). The assumptions, which were made
in order to solve the integral above, are not valid outside this
frequency range, where the existence of the solution (14) at

frequencies above wg* is not given. Hence, the given solution

(14) is only valid for v/wo(wo + wy) < © < Wy + wyr/2 and
is set to O otherwise, which corresponds to the absence of
spin waves. Within this definition range, the absolute value of
the field amplitude in (14) at fixed magnetic field depends on
the excitation frequency as plotted in Fig. 2. The wide range
plot in Fig. 2(a) shows the expected behavior. As discussed
before, an upper bound at wi:* cuts off the spin wave driving
regime. Above this limit, the amplitude rapidly drops to a
level at least six orders of magnitude smaller. Below this limit,
the amplitude increases until the frequency wih* for DESW
modes is reached, which becomes apparent as a high peak

Iy sin(k,w/2)[ wy(wo + oy + o)
4w? — Q2w + oy )?

@o + Oy — @ i|ek-:Z ek (14)

2wy + wy — 2w

(

just below the cut-off frequency. Although the increase of |H'|
from low frequencies towards wg* in Fig. 2(a) seems to be
smooth at first sight, the magnifications in Figs. 2(b) and 2(c)
highlight a substructure of amplitude dips very close to the
maximum. The occurring amplitude dips correspond to the
minima of the amplitude function in (14) induced by the zeros
of the factor sin(k,w/2)/k;. The position of the amplitude dip
at @, in Fig. 2(c) differs by only a few hundreds of Hz from
the resonance maximum and, therefore, might not be resolved
in usual resonance experiments. In contrast, the second dip
in Fig. 2(b) is more incisive and occurs at a frequency a few
MHz from the maximum. This second decrease in the field
amplitude should be experimentally resolvable as discussed
later in Sec. V.

IV. MAGNETICALLY DRIVEN NV SPINS

The spin wave propagation through the magnetic thin film
can increase the interaction between the external field and a
quantum system. As a consequence, the driving of magnetic
dipole transitions of NV centers in diamond can be performed
more efficiently. In order to model the coupling strength
and to simulate the resulting transition spectrum, we have to
distinguish whether a single NV center or an NV ensemble in
single crystal diamond is probed.

A. Single NV

The ground state of the NV center is a spin triplet, which
is split into the mg = 0 and mg = =1 sublevels. This ground
state energy splitting D of 2.87 GHz [2] originates from spin-
spin interaction and the Hamiltonian of the spin triplet is

Hy = DS? + gugBo - S, (15)
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FIG. 3. (a) Possible orientation of NV centers inside the diamond structure. Depending on the alignment of the connection line between
a substitutional nitrogen atom (green) and the neighboring vacancy (red), the NV axis (red) can be oriented in the depicted four directions.
(b) The crystal structure of diamond leads to four different angles 6p; between the magnetic field and the possible NV-axes ¢;. (c) Resonance
frequencies of the magnetic dipole transitions within the ground state triplet of an ensemble of NV centers embedded in single crystal diamond.
Each of the four possible NV center orientations ¢; contributes two resonances at w* indicated by the different line styles. The resonances
depend on the alignment of the magnetic field. For the left plot in (c) the magnetic field is 63 = 50° at an angle gz = 30° with respect to one
of the crystal axes and on the right the chosen parameters are 6 = 15°, pp = 50°.

where the second term accounts for the Zeeman splitting with
an external magnetic field By = (By, By, B;). The spin vector
S = (S, S'y, S.) contains the (S = 1) spin operators S;, which
are defined in the basis of the mg = 0, —1, 1 spin projections
corresponding to the S, eigenstates {|0), |—), and |+)}. In
cases where the magnetic field is not aligned with the NV-axis
¢, the Hamiltonian (15) can be written as

Hy = DS‘Z2 + gupBy(sin Op S, + cos O S‘z), (16)
where the relative angle 05 quantifies the orientation of the
external magnetic field in the frame of the NV center. Since
the Hamiltonian (16) depends explicitly on g, the according
eigenenergies and, consequently, the frequencies a)g; of the
dipole transitions |0) <> |£) vary for different orientations
of the magnetic field with respect to the NV axis. Hence,
the transition spectrum of a single NV center consists of
two frequency branches a);';, whose behavior with respect to
varying bias field By is determined by the given value of 5.

B. NV ensemble in single crystal diamond

In case of an NV ensemble every single of the numerous
NV centers contributes two branches to the transition spec-
trum. If the single NV centers were randomly oriented, all
branches would combine to a blurred spectrum. But due to
the particular symmetry of the diamond crystal, the actual
transition spectrum of an NV ensemble inside a single crystal
consists of single branches. For a single crystal diamond, the
lattice has a fixed orientation in the laboratory frame, but
inside the diamond structure the actual orientation of an NV
center is not controllable during fabrication. Thus, the NV
axis can be aligned along the four crystal directions shown
in Fig. 3(a), which are at a tetrahedral angle of 6, = 109.5° to
each other. A single nanodiamond contains NV centers with
orientations equally distributed over these four directions.
Accordingly, for a fixed By-field orientation, the magnetic
field is aligned at a different angle with respect to each of
these four directions. Consequently, there are not numerous
overlaying resonance branches, but each of the four possible

NV-axis orientations gives rise to two resonances and in total
there are eight resonances for an NV ensemble.

In order to describe the expected magnetic resonances with
a formula, the NV center orientation is expressed in terms of
the relative angles 6p; between the possible NV axis and the
magnetic field as shown in the Fig. 3(b). Choosing one of the
NV-axes ¢y to define the z direction and one of the carbon
atoms to lie on the x axis, the normalized magnetic field
vector and the four N'V-axes ¢; are parametrized in spherical
coordinates as B = (sin O cos @g, sin g cos g, cos fg) and
Ci = (sin 6; cos ¢;, sin B; cos ¢;, cos ;) with 6y =0, 6123 =
6, 90,1 =0, and ¢, 3 = 27 /3, 4 /3. The introduced coordi-
nate system is thus fixed to the crystal lattice. Based on these
vectors, the angles 6p; between the single NV axes and the
magnetic field in Fig. 3 are related to the corresponding scalar
product as

cos g = B - & = sin @ sin 6; cos(gp — ;) + cos O cos 6;.
(I7)

Inserting the angle 65; obtained from this expression into the
Hamiltonian for nonaligned magnetic field (16) and calcu-
lating the transition frequencies between the corresponding
eigenenergies yields the spectra depending on the polar as
well as the azimuth angle of the magnetic field as plotted
with respect to the strength of the applied magnetic field
in Fig. 3(c). A comparison of the two plots corresponding
to different parameter sets (6g, ¢p) highlights the sensitivity
of the resonance spectrum of single crystal diamond hosting
an ensemble of NV centers to rotations of the crystal in a
magnetic field. In that way, information about the spatial ori-
entations can be extracted by exploiting the existing relation.

From experimental data of the eight different magnetic
resonance frequencies in a nanodiamond of known crystal
orientation, the angles 65 and ¢p can be calculated or, in turn,
from a known magnetic field alignment, the crystal directions
of ananodiamond can be derived. Hence, the resonance exper-
iment can be used to sense a probe magnetic field resolving its
transitions on the one hand and to measure the crystal orien-
tation of a nanodiamond indirectly on the other hand [15,16].
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C. Spin dynamics

In order to model the quantum mechanical coupling of
an NV ensemble to the calculated spin wave field (14), the
corresponding Bloch equations are solved. Therefore, we
use a five level scheme similar to [17], which includes the
NV energy levels relevant for the processes in an ODMR
experiment. The NV is pumped with a continuous laser, which
excites the system from its ground state *A, triplet {|0), |£1)}
to the excited state *E triplet {|e0), |+el)}. From the excited
triplet states, the system partially decays optically back to
the ground state manifold and the intensity of the emitted
fluorescent photons is detected in ODMR experiments.

Without an external microwave drive and in the presence of
optical excitation the fluorescence would just have a constant
intensity and the system would be polarized in the m, = 0 due
to the intersystem crossing channel via the excited singlet 'A;
state |s). The induced resonance microwave transitions within
the ground state manifold pump the system out of m; =0
state and in the presence of optical excitation lead to a change
of fluorescence intensity. The intensity in fact drops because
now the system spends more time in the |s) state, which is not
optically active at the same photon frequency.

The dynamics of this mechanism are described by the time-
dependent five-dimensional density matrix p(¢) of the system
written in the basis of {|0), [1), |e0), |el), |s)}. Thereby, only
the driven mg = 1 triplet sublevels are regarded, since we
neglect transitions from the singlet to the spin state that is
not driven by the microwave field. When the transition into
the mg = —1 state is driven, we use the replacement |1) —
| — 1). The density matrix is determined by solving the master
equation in Lindblad form,

A 1
op = ilp. HI+ ) [LMpLL SLulup = 5

1pLTL ]
n>0

(18)
where the operators L,, describe a nonunitary time evolution
due to dissipative interactions between the system and the
environment, which is given by the photon bath of the pump-
ing laser and the emitted fluorescence. For the special case
of the five level system, the Hamiltonian A for the closed
system in (18) is decomposed into the static part and the
interaction part H = Hy + H;. The static Hamiltonian Hy is
diagonal containing the eigenenergies &; of the five states

li) with i =0, 1, €0, el, s. Writing the classical microwave

field as B,y (t) = B, cos(wt), the interaction Hamiltonian is
given by
Y QR iwt —iwt
Hp = — (& + ") (|1)(0] + [0)(1]), (19)

2

with the Rabi frequency Qg = y (0|Bmw - S|1) denoting the
coupling strength due to magnetic dipole interaction between
the driving field and the ground state triplet. The action
of this Hamiltonian in the excited state manifold is irrel-
evant for the current study and thus we neglect it. Here
the spin vector S = 1/20 can be represented by the Pauli
matrices 0 = (oy, 0y, 0;). The operators L, in (18) represent
the various dissipation processes as well as the continuous
pumping, which excites the system from the ground state
manifold to the excited state manifold at pumping rate I',,

where the mg quantum number is left unchanged, i.e., Lg =
'/21e0)(0] and L, = T'}/*e1)(1|. The inverse process, the
direct decay back into the ground states, happens at rate I'g
and the corresponding operators are L) = 1/ 2|O)(e0| and

Lé = 1"(1)/ 2|1)(el|. For the intersystem crossmg the coupling
between the lower level |e0) and |s) is much smaller than
the coupling between the highest level |el) and |s), therefore,
the former is neglected. Hence, the corresponding operator
is Loy = F‘}S/2|s>(el|. The second intersystem crossing from
|s) to the ground state triplet |0) and |1) is modeled to
have the same probabilities for ending up in the final states
|0) and |1) with the operators L?g = (F‘vg/2)1/2|0)(s| and

= (Fsg/2)1/2| 1)(s|. Furthermore, the T} decay atrate '} =
1/T, from the mg = +1 and mg = 0 ground states into the
equilibrium, which is assumed to lie at equally populated
states is included. We also treat the transverse relaxation
including dephasing within the ground state spin triplet at rate
I',. The corresponding operators can be written in terms of
spin operators as L; = (I';/2)'/2(|0)(1] 4+ |1)(0]) and L, =
(I"2 /2)1/ 2 6.. Inserting these operators and the Hamiltonians
Hy and H; into the master equation (18) yields the time deriva-
tive of the density matrix p in the form of 15 coupled first
order differential equations with time-dependent coefficients.
Since some of these equations are redundant, a system of only
seven differential equations actually has to be solved, where
the rotating wave approximation is used. In the special case
of continuous pumping a single measurement of the ODMR
contrast at fixed driving frequency w is detected over a time
long enough to allow the system to evolve into a dynamical
equilibrium. Hence, the solution of interest is a steady state
where the time derivative in (18) can be set to zero. Finally,
the matrix elements p;; are obtained by solving the remaining
system of linear equations.

D. Optical detection

The ODMR intensity / can be calculated from the obtained
solution for the density matrix p. It is given by the number of
emitted photons, when the excited states |e0) and |el) decay
optically to the ground state triplet. Due to the existence of the
intersystem crossing channel, only a part of the population in
lel) contributes to the intensity. In detail, only the fraction
[o/(Tg + Ies) remains within the spin triplet channel. Treat-
ing the detected intensity to be proportional to these effective
probabilities, it can be written as

r

0
I & pepen + mpelel- (20)

For the steady state solutions, the normalized intensity
depending on the detuning 6 = & — w turns out to be
Lorentzian,

52
where ¥ describes the width of a resonance centered at § = 0,
which is simplified assuming the following. First, the decay
rate from the excited state |el) into the triplet ground state and
the intersystem crossing channel are of the same order, i.e.,
I,y &~ T'y. Second, the ground state triplet is not completely
depopulated during the experiment, which requires a pumping

1(8) = 2D
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rate much lower than the decay rate I'), < I'g, and the T
decay being much slower than the leakage via the intersystem
crossing channel I'j < I'y,. [17] Under these conditions, the
parameter Y takes the compact form

4TS[1 4T,/ (4T,)]
v = o eff 2 2 p S8 92, 22
Z \/(2)"‘ mrrga e 2
with the effective transverse relaxation rate ['ST = I', + T, +

I'1 /2. So far, we assumed degenerate mg = +1 sublevels. But
since the NV ensemble in the considered setup is placed in
a static bias magnetic field, these sublevels are split by the
corresponding Zeeman energy. Thus, if the NV ensemble is
driven with a microwave field at frequency w, each of the
transitions |0) <> |4+) and |0) <> |—) will be excited with
different detunings 61 = wi — w. In addition, the resonance
spectrum of a single nanodiamond is a combination of the
resonances originating from four different alignments of the
NV axes as discussed for an NV ensemble. To calculate
the ODMR spectrum of an NV ensemble inside a nanodia-
mond with eight occurring resonances, we assume the eight
expected resonances being far off-resonant with each other.
Hence, at 81 = 0 the detuning from the second resonance 8t
is large enough and single transitions are excited separately.
Therefore, the contributions / (8 ) in (21) from each of the
eight resonances are summed up to the intensity of ODMR
fluorescence,

(@)= (23)

sy

2’
j=% i=1 +

Due to the large magnetic field amplitudes of the driving field
in the experiment, the linewidth ¥ in (22) is dominated by the
second term, which means that the lines can be assumed to
be purely power broadened [17]. In the case of low pumping
power, the condition I',/4 « Iy, is fulfilled and ¥ can be
further approximated by

eff
v~ L Qr. 24)
r+r,/4
a
(2) 05
29
EN —
]
O s 20 &
g 27 =
Q
o 35 <
L =S
=)

B
=)

20 40 60 & 100 120
Magnetic field (G)

For a plot of the ODMR intensity /(w) in dependence of
the bias field strength, we assume realistic values for the
relaxation times 77 = 1/I"y and T, = 1/T"; of the NV center
to lie in the range of ms [18] and us [19] and a pump-
ing rate I') ~ 10% s!, so that the linewidth is approxi-
mately 2Qx.

Based on the intensity (23) with the simplified linewidth
(24) and using the spin wave field amplitude (14) calculated in
Sec. III, a theoretical ODMR spectrum is plotted in Fig. 4. In
the frequency regime above the cutoff of spin wave excitation,
ie., @ > oy, we use a microwave driving field amplitude
corresponding to a pure antenna field H ,,, without spin wave
excitation inside the YIG film.

The parameters xny and P entering the function for H gy /an
are chosen to be equal to the experimental spectrum in Fig.
S3 of the Supplemental Material of Ref. [10], which are
given by the distance between the nanodiamond and the
antenna xyy ~ 5 um and a driving power of P = 0.5 uW.
The angle of the bias field is chosen arbitrarily to be 65 =
14° and ¢ = 7°. The zoom of two resonances within the
black boxed area in Fig. 4(a) right at the maximal spin wave
excitation frequency is given in Fig. 4(b). The more the
driving frequency approaches the cut-off frequency wi*, the
stronger the resonances are broadened, which results from the
maximum of the amplitude function H' at the upper frequency
limit. In addition, the high resolution in Fig. 4(b) also shows a
sharp peak in the intensity apparent as a bright line parallel
to the border between the driving regimes. The reason for
this intensity decrease is the substructure of the amplitude
function in the spin wave driving regime and it corresponds
to the first dip in Fig. 2 at frequency @gy. Close to the cut-off
frequency wq*, the spin wave field again increases. This
becomes apparent by the dark line in Fig. 4(b) crossing the
resonance branches from the bottom left to the top right.
Such an intensity behavior close to wg:* is consistent with the
experimental data in the Fig. S3 of the Supplemental Material
to Ref. [10], where a similar dark line was observed. We can
thus conclude that the amplitude function (14) describes the
field amplitude in the spin wave regime at a satisfying level of
accuracy.

(b) "

2.805 -k
g 30 5
3.0 =
g‘z.&)[) \,@/
& 50 2
= 2795 Z
éi 5}
5 —7.0 B
= 2.790 -

|
©

72 73 T4 75 76 T 78
Magnetic field (G)

FIG. 4. (a) and (b) ODMR intensity / depending on the magnetic field and the driving frequency. The used parameters correspond to a
nanodiamond at xyy = 5 um away from the antenna and a driving power of 0.5 ©W. For the magnetic field orientation the arbitrary values
0p = 14° and g = 7° are chosen. In (b), a zoom of the black boxed area in (a) is shown, which highlights the substructure of the resonances

right at the cut-off frequency wg:~.
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V. ENHANCEMENT

Due to the presence of spin waves inside the magnetic film,
the magnetic field coupling to an NV ensemble is enhanced
compared to the amplitude of a pure antenna field. Moreover,
the spin wave field has the great advantage of longer decay
length, which becomes apparent when inspecting the explicit
dependencies of the spin wave field in (14). The lack of x
dependence of the field amplitude indicates a very important
difference from a pure antenna driving field. The microwave
field of the antenna decays as 1/x, so that the coupling
strongly depends on the position of the interacting NV center.
In a system of defect spins addressed or read out with an
oscillating magnetic field, information can be transferred over
a distance, which increases with the length over which the
field amplitude is conserved. Hence, the x-independent spin
wave field amplitude in (14) appears to lead to a constant
coupling over a large distance. Realistically, the coupling
decays due to the neglected exchange energy terms in the
susceptibility tensor. The corresponding terms would give
rise to a magnetic amplitude damping in (14) along the x
coordinate. But YIG has a particularly low damping parameter
and the excited spin waves propagate at low k, thus justifying
the made approximation. Along the z direction, C; decays
exponentially with the distance to the surface, i.e., the spin
wave modes are confined to the surface of the thin film.
This guarantees a highly localized field, so that the effect of
spin wave enhancement is only present in the vicinity to the
magnetic film.

Using the obtained result for the spin wave field allows us
to investigate the enhancement of the coupling strength Qg
with respect to the case without spin wave excitation. The
enhancement factor is defined as n = Q}'/Q%", where Q%"
denotes the Rabi frequency in the case of spin wave excitation
and Q¥" is the same quantity for the pure antenna driving
without any back action originating from magnetic material.
More specifically we calculate the antenna field without re-
garding the stray field of the YIG, which is reasonable in
the regime without spin wave excitation, since the thin film
is located in an approximately homogeneous magnetic field
and due to its small height the influence on the antenna field
becomes negligible. Both quantities, the spin wave and the
antenna field, depend on the angle between the respective field
and the NV center, which is nonzero in the general case.

In a coordinate system S’ with 7' axis parallel to the
NV-axis ¢ and the antenna field lying in the x’z’ plane,
the magnetic fields of the antenna and spin waves are
parametrized as By = Bane(sin Ogne, 0, cos Oyne) and Bgy, =

sin(kw/2)

denotes the angle with respect to the ¢ axis and the spin wave
field is at the angle ¢, with respect to the x'z’ plane. The Rabi
frequency scales with the off-diagonal terms in By - S,
so that Q3" oc Byy sin O,y exp(—i¢gsy) and analogously for
the antenna driving field. Inserting this into the enhancement
ratio yields

H,, sin0,

— —lPsw

1 Hype $i0 Oy ¢ ' )
Since the phase factor e~ does not affect the absolute
value of this enhancement, it is omitted in the following.
Furthermore, we want to adapt our result to the experimental
method described in [10], where the resonance between the
same levels is measured twice in the different driving regimes,
the antenna driving and the spin wave driving regime. To
measure both regimes at the same frequency, a resonance has
to lie once above the maximal excitation frequency of spin
waves and once below, so that the different regimes can be
tuned by the bias magnetic field. For the realization of such
a measurement, the orientation of the bias field has to be
noncollinear to the NV axis, whereby the states |0) and |+)
become coupled and the energy splitting does not depend
linearly on the magnetic field. Thus, the resonance branches
are tilted as plotted in Fig. 5(a). The plot shows the NV
resonances in the case of the NV axis being aligned in the xy
plane at an angle of 65 = 78° with respect to the bias magnetic
field. In Fig. 5(a) only six resonances are visible, because
the magnetic field encloses the same angle with two of the
possible crystal directions leading to these resonances being
twofold degenerate. An excitation frequency of 2.86 GHz is
on resonance with a bias field By, in the antenna driving
regime, which is marked by the blue dot in Fig. 5(a). A
second resonance (red dot) occurs in the regime of spin wave
excitation at Bygy. For an optimal resolution of the detection
in both regimes, the antenna current, i.e., the driving power P
is varied. The antenna field decays rapidly with the distance
of the NV center from the antenna, so that a driving power
of the order of mW is required to obtain a clear signal. If
the same driving power was used in the spin wave driving
regime, the resonance would be significantly power broadened
and hence, a lower power at several uW is chosen. Hence,
the enhancement ratio n has to be corrected by the impact
of varying driving power. Both the antenna field amplitude
H,, and the spin wave field amplitude Hy,, depend linearly
on the driving current Iy = (2P/Z)'/2, which is an effective ac
current through a wire with impedance Z. Finally, the effective
enhancement ratio is obtained by normalizing the fields with
respect to the driving power Pypysw,

wy (wotoy+®) ,—2kld wotoy—o \,—kz .
(4w27(2w0+wM)2 € + 2w0+wM72a))e " sin Oy

By (81N Oy, COS @y, SIN Ogyy SIN @gy, COS Oy ),  Where  Oanysw
J
Pant | Hey sin Oy «/_ Pant k.
Neft = - =427
PSW Hant Sin Qant PSW

- . 26
n[(z /(5 ] |

In the limit x > w, the logarithm in the denominator can be expanded and becomes linear in w/x. For the enhancement in

this limit one therefore obtains

x |P,
Nerr = 22w — | ==
w

SW

k.,

sin(kyw/2) ( wp(wo + oy + o) o—2Kid
4 — 2wy + wpy )?

— /. Sin Bgy
wo + wy — w )e_kxz sin 6 . o7

2wo + wy — 2w Sin Gy
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FIG. 5. (a) Plot of the resonance frequencies of an NV center (black) depending on the bias field. The NV axis is oriented in the xy plane at
an angle of 78°. The black dashed line represents the step between the spin wave and antenna driving regimes. The intersections of the driving
frequency (blue/red dashed) with one of the branches indicates possible measurement settings. (b) Dependence of the effective enhancement
negr on the distance between the NV ensemble and the MSL. The theoretical model corresponds to the red line and the data points represent the

experimental results of Andrich et al. presented in Ref. [10].

With this expression, we are able to make a theoretical pre-
diction for the enhancement for an NV center located at xnv.
Since the far field approximation was made, the condition x >
k~! has to be fulfilled and for wave numbers of the excited
spin waves [10] of the order of ~10° m~!, the expression
(26) applies for distances above ~10 um. For example, the
resonances of a nanodiamond at xyyv = 20 wm driven by
a field at 2.862 GHz occur in the antenna regime at 15 G
and in the spin wave driving regime at 145 G. Using these
parameters, the enhancement factor of the coupling between
the defect spin and the driving field is neg &~ 117, which is
close to the experimentally measured enhancement 7eg ~ 100
detected via Rabi experiments [10]. Moreover, when distance
x in expression (26) is varied, the enhancement factor nes
behaves as plotted in Fig. 5(b), along with the experimental
data of Andrich et al. [10]. The theoretical prediction matches
the experimental behavior, although the experimental data are
slightly shifted to lower enhancement values with respect to
the predicted theory curve. Nevertheless, the linear x depen-
dence of nef not only shows good agreement with the trend
of experimental data, but also an achievable enhancement
factor of more than 400 at distances above 70 pum which
underscores the great advantage of spin wave excitation inside
the magnetic film. For low magnetic damping the spin waves
do not decay as fast as the microwave field leading to a large
enhancement far away from the antenna.

VI. CONCLUSION

We have presented a theoretical model that provides a
complete description of real experimental hybrid systems
consisting of driven spin waves coupled to NV spins. All
results are obtained analytically and especially the description
of spin wave modes follows a fundamental approach from
the basics of Maxwell’s equations. In that way, we derive an
analytical solution for the magnetic field amplitude, which
allows for a theoretical calculation of the coupling of spin
waves to an NV ensemble. We regard every possible spatial

orientation of an NV center in a real nanodiamond, thus
obtaining the full spectrum capturing all eight resonances. Our
theoretical intensity plots show good agreement with existing
experimental data [10], which clearly highlights the suitability
of the developed model. The existence of the substructure
and an upper frequency bound limiting the spin wave driving
regime are important features, which follow from the theoreti-
cal calculations. They provide an accurate but at the same time
very applicable method of tuning the drive of spin rotations of
an NV center, where the resonant coupling below the cut-off
frequency in the spin wave driving regime is calculated to be
much stronger with respect to the case of pure antenna driving.
This difference in the coupling strength is a powerful tool to
speed up qubit operations in the field of quantum computing.
The derived enhancement factor 7. is strongly dependent on
the distance between the source of the microwave field and the
NV ensemble. Accordingly, the magnetic field at the NV spin
can be enhanced by two orders of magnitude and the predicted
behavior for longer distances is in good agreement with
recent experiments [10] indicating the strength of our model
as well as the applicability of the related assumptions and
approximations. The presented solutions are obtained using
the far field approximation, which holds for distances above
~10 pm. This regime is of particular interest for technical
realizations, since it is a general problem to couple a sensitive
quantum system to a microwave antenna across distances of
more than a few pum in view of the rapidly decaying antenna
field. In contrast, we show that the spin wave field is very
stable across the distance enabling a coupling to NV centers
far away from the antenna by using a magnetic thin film.

If the enhancing effect over a long distance is of particu-
lar interest the made approximations are reasonable and the
model provides good results. But in the case of a modified
system operating at different conditions, possibly the limits
of our theoretical model could be reached. If a nanodiamond
is positioned very close to the antenna, there is need of a
solution outside the far field regime, which is applicable for
short distances. An exemplary real system would be an array
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of nanodiamonds, where the antenna is not deposited on the
side of but in between the array, so that the NV centers are
partly in the near field and partly in the far field regime.
Strictly speaking, this would require a mid field solution as
well.

Further unconsidered effects, which had to be taken into
account in order to optimize the presented model, are addi-
tional boundary effects caused by the surrounding material
being nonperfect magnetic vacuum or spin wave reflections
in case of the film having finite expansion in the xy plane.
A refinement of the model considering those aspects would
lead to important insights with respect to new applications
of a spin wave mediated coupling. Since the spectrum of
the spin waves is mainly determined by the shape of the
ferromagnetic sample, the driven spin wave modes could be
adapted by shaping, for example, a ferromagnetic sphere or a

disk. In this way, the technique of the experiment of Andrich
et al. [10] could be transferred to various magnetic resonance
experiments by changing the driven spin wave modes to lie on
resonance with other defect spins like different color centers
in diamond or vacancies in silicon carbide. The usage of a
spin wave resonator, which has already been experimentally
realized [20], would lead to an additional improvement of
spin wave excitation. This provides an outlook towards the
possible long-term goal of achieving a coherent coupling
between single magnons and single defect spins, thus entering
the quantum regime.
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