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Motivated by recent experiments of Zajac et al. [Science 359, 439 (2018)] , we theoretically describe high-
fidelity two-qubit gates using the exchange interaction between the spins in neighboring quantum dots subject to a
magnetic field gradient. We use a combination of analytical calculations and numerical simulations to provide the
optimal pulse sequences and parameter settings for the gate operation. We present a synchronization method which
avoids detrimental spin flips during the gate operation and provide details about phase mismatches accumulated
during the two-qubit gates which occur due to residual exchange interaction, nonadiabatic pulses, and off-resonant
driving. By adjusting the gate times, synchronizing the resonant and off-resonant transitions, and compensating
these phase mismatches by phase control, the overall gate fidelity can be increased significantly.
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I. INTRODUCTION

Spin qubits [1] implemented in silicon quantum dots [2]
are a viable candidate for enabling quantum-error-corrected
quantum computation due to their long coherence times [3–6]
and high-fidelity qubit manipulation [7–9]. Experiments using
isotopically enriched silicon show single-qubit fidelities F >

99.9% [10], thus exceeding the threshold of quantum-error
correction [11]. Successful demonstrations of two-qubit gates
[6,7,9,12], however, show fidelities far below the fault-tolerant
threshold, therefore being the limiting factor for large-scale
quantum computation. Here, based on state-of-the-art quantum
devices [13], we show a way to implement high-speed and
high-fidelity two-qubit gates.

High-speed and high-fidelity single-qubit gate operations
are achieved using electric dipole spin resonance (EDSR)
by shifting the electron position in a slanting magnetic field
through the modulation of the electrostatic gate voltages
[7,9,10,12,14,15]. Interconnecting multiple spin qubits is pos-
sible through the exchange interaction between electrons in
adjacent quantum dots [1,16,17]. However, the fidelity of
these gates is strongly limited by charge noise, which is
induced by electric fluctuations of the system, and gives rise to
substantial gate operation errors [12,18]. Higher fidelities can
be achieved if the system is operated at a symmetric operation
point or sweet spot, where the exchange coupling is first-
order insensitive to electric fluctuations [19–23]. Alternatively,
combining exchange with a strong magnetic field gradient
between the electron spins in the dot [7,9] suppresses the
dominating dephasing processes through the large energy split-
ting of the two-qubit states [24]. Two explicit implementations
for two-qubit gates have been successfully demonstrated, an
ac-pulsed frequency-selective controlled-NOT (CNOT) gate
[7,9] and a dc-pulsed controlled-Z (CZ) gate [9,25,26]. These
realizations are still not perfect, both acquiring local phases on
the individual spin during the gate operation due to unitary
and nonunitary effects, e.g., charge noise, which have to

be identified and compensated. The reduction of the overall
gate fidelity due to off-resonant driving still remains an issue
without the use of complex pulse shaping [27,28].

In this paper, we address both the dc CZ gate and the ac
CNOT gate, and propose several steps towards implementing
high-fidelity gates. These steps include adding an echo pulse,
synchronizing the resonant and off-resonant Rabi frequencies,
and identifying local phases that the individual spins acquire
during the gate operation. The paper is structured as follows. In
Sec. II, we begin with the theoretical description of our system.

FIG. 1. Illustration of a gate defined double quantum dot (DQD)
occupied with two electron spins inside a large homogeneous mag-
netic field (not shown) and an inhomogeneous magnetic field B from
a micromagnet. A gradient ∂Bz

∂x
along the double-dot axis (x direction)

gives rise to distinguishable spin resonance frequencies. Periodic
modulation of the gate voltages (VL and VR) shifts the electron
position in the z direction (in plane) which generates an oscillating
magnetic field in the motion frame of the electrons due to the gradient
∂By

∂z
. An electrostatic barrier gate VM allows for precise control over

the exchange interaction J between the spins.
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Subsequently, we model the dc-pulsed CZ gate (Sec. III) and
present a high-fidelity implementation in Sec. III A. Then,
we describe the ac-pulsed frequency-selective CNOT gate
(Sec. IV), provide a synchronized high-fidelity implementation
in Sec. IV A, and show its performance under the influence of
charge noise in Sec. IV B. In Sec. V, we conclude our paper
with a summary and an outlook.

II. THEORETICAL MODEL

Our theoretical investigation is inspired by the experiments
of Ref. [7], therefore, we use the same terminology for the
theoretical description. The setup (see Fig. 1) consists of
two gate defined quantum dots in a Si/SiGe heterostructure
operated in the (1,1) regime where (nL,nR) is defined as
the charge configuration with nL electrons in the left and
nR electrons in the right dot. The methods presented in the
following can be applied to quantum dots in other materials as
well. A middle barrier gate is biased with voltage VM to tune
the exchange interaction J between the two spins. For our
theoretical description we use the Heisenberg Hamiltonian of
two neighboring spins that are placed in an inhomogeneous
magnetic field

H (t) = J (t)(SL · SR − 1/4) + SL · BL + SR · BR. (1)

Here, J (t) describes the time-dependent Heisenberg exchange
interaction between the spin of the electron on the left dot
SL and the spin of the electron on the right dot SR , resulting
from the hybridization of the singlet electron wave function
with the additional charge states (2, 0) and (0, 2). In the
Hubbard limit, in the (1,1) charge configuration, exchange
is given by J = 2t2

M (UL + UR)/[(UL + ε)(UR − ε)] where
tM = tM (VM ) is the tunneling matrix element between the
electron spins which depends on the middle barrier voltage

VM , ε ∝ (VL − VR)/2 is the single-particle detuning between
the energy levels of the two spins set by VL and VR , and UL and
UR are the respective charging energies in the dots. Here, ε = 0
corresponds to the center of the (1,1) charge regime. Either
biasing the DQD, thus, changing ε, or barrier control, changing
VM , yields control over the exchange interaction with barrier
control being superior if operated at a charge noise sweet spot
[20,21,29] near the center of the (1,1) charge region.

The remaining terms in the Hamiltonian (1) describe the
interaction between the spin and the magnetic field (in energy
units) BL = (0,BL

y (t),Bh
z + BL

z )T and BR = (0,BR
y (t),Bh

z +
BR

z )T . The field consists of the homogeneous component Bh
z

which lifts the spin degeneracy, and an inhomogeneous field
produced by the micromagnet BQ

z (Q = L,R) that leads to
distinct ESR frequencies for the left and right spins allowing
one to individually address each spin. A transverse time-
dependent field

BQ
y (t) = BQ,0

y + BQ,1
y cos(ωt + θ ) (2)

occurs from the shift of the electron position in the slanting
magnetic field along the x direction. This last contribution is
further composed of a small static part BQ,0

y and a dynamic
coupling term BQ,1

y due to an electrostatic modulation of
the electrostatic gates VL and VR , with frequency ω. The
contribution of the static part BQ,0

y � |BL − BR| will drop
out in the rotating-wave approximation with frequency ω, and
is therefore neglected in the following.

Addressing each spin as a separate qubit, the
Hamiltonian (1) can be written in the two-qubit basis
{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} as follows:

H (t) =

⎛⎜⎜⎜⎜⎝
Ez −iBR

y (t) −iBL
y (t) 0

iBR
y (t) −(δEz + J )/2 J/2 −iBL

y (t)

iBL
y (t) J/2 (δEz − J )/2 −iBR

y (t)

0 iBL
y (t) iBR

y (t) −Ez

⎞⎟⎟⎟⎟⎠. (3)

Here, we introduced the difference and the average Zeeman
splitting δEz = BR

z − BL
z and Ez = Bh

z + (BL
z + BR

z )/2. In
the absence of exchange, J ≈ 0, single-qubit operations are
possible by matching ω with the resonance frequency Bh

z + BL
z

(Bh
z + BR

z ) of the left (right) dot. This corresponds to regime
II in Fig. 2. A large δEz is beneficial since it widely separates
both resonances in energy allowing for stronger driving, thus,
faster gate operations.

III. DC ENTANGLING GATES: PULSED EXCHANGE

Two-qubit gates between neighboring single-spin qubits
are realizable using the exchange interaction between the
spins [1,18] with or without a magnetic field gradient [25,26].
If the exchange energy dominates the Hamiltonian (3), i.e.,
J � δEz, the (approximate) two-qubit eigenstates are the spin

singlet |↑↓〉 − |↓↑〉 and triplets |↑↑〉, |↑↓〉 + |↓↑〉, |↓↓〉, and
the resulting operation yields (for δEz = 0) the entangling√

SWAP gate. Sequential implementation of two
√

SWAP
gates and single-qubit rotations yields a CNOT gate [1]. In the
case of weak exchange, i.e., J � δEz, the two-qubit states are
effectively the product states |↑↑〉, |↑̃↓〉, |↓̃↑〉, |↓↓〉 with small
corrections in |↑̃↓〉 and |↓̃↑〉 due to the exchange interaction. In
this limit, the exchange interaction yields a conditional phase
(CPHASE) gate [25]. In this paper, we focus on the regime
J � δEz which is typical for DQD systems in the presence
of a micromagnet. However, for adiabatic pulses, with ramp
time τr � J/δE2

z , both implementations are equivalent. The
definition of the ramp time τr is illustrated in Figs. 2(b) and
2(c). Note that the criteria for the adiabatic regime is usually
fulfilled in state-of-the-art devices [7,9,10]. For an adiabatic
pulse, the instantaneous eigenvalues of the Hamiltonian (3)
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FIG. 2. (a) Eigenenergies E of two spins in a double quantum dot in the presence of a magnetic field gradient and relevant transitions
between them for three distinct parameter regimes. Regime I describes the case without a magnetic field gradient in which all single-spin-flip
transitions are energetically degenerate. In the presence of a field gradient (regime II) the degeneracy of the transition frequencies between the
left (solid line arrow) and right spin (dashed line arrow) is lifted, making it possible to energetically distinguish between single-qubit operations
on the left and right spin. Turning on the exchange interaction J � δEz (regime III) further distinguishes conditional spin flips from each other,
i.e., the left ESR resonance frequency now depends on the right spin state, thus allowing for frequency-selective entangling two-qubit gates.
Such conditional spin flip operations are possible, e.g., by resonantly driving the transition |↑↑〉 ↔ |↓̃↑〉 to perform a single-shot CNOT gate.
Since the eigenstates E(|↓̃↑〉) and E(|↑̃↓〉) are both energetically lowered (by J/2 for J � δEz) the transition |↓↓〉 ↔ |↑̃↓〉 is detuned from
resonance by ∼J . (b) Schematic pulse sequence of the spin-echo CZ gate described in Sec. III A. Two adiabatic middle barrier pulses of length
τdc/2 and ramp time τr are combined with two ac pulses of length τL,R

ac , performing a spin flip on the left and right spin. (c) Schematic pulse
sequence of the frequency-selective CNOT gate. An adiabatic middle barrier pulse with length τdc and ramp time τr is combined with an ac
pulse of length τac resulting in a conditional spin flip.

are given as follows:

E(|↑↑〉) = Ez, (4)

E(|↑̃↓〉) = ( − J −
√

J 2 + δE2
z

)/
2, (5)

E(|↓̃↑〉) = ( − J +
√

J 2 + δE2
z

)/
2, (6)

E(|↓↓〉) = −Ez. (7)

Figure 2(a) shows the eigenenergies for three different param-
eter regimes. Note that for J � δEz one can use the expan-
sion

√
J 2 + δE2

z ≈ δEz + J 2

2δEz
simplifying the expressions in

Eqs. (5) and (6). The time evolution of an adiabatic exchange
pulse of length τ in the rotating frame H̃ (t) = R̃†HR̃ + i ˙̃R†R̃
with R̃ = exp [−iωt(Sz,L + Sz,R)/h̄] and h̄ω = Ez/2 is given
by

U (τ ) = diag[1, ei(J̄+K̄) τ
2h̄ , ei(J̄−K̄) τ

2h̄ ,1]. (8)

Here, we define the average exchange J̄ = 1
τ

∫ τ

0 J (t)dt and
an average effective gradient K̄ = 1

τ

∫ τ

0

√
J (t)2 + δE2

z dt . The
time evolution, up to a global phase, can be decomposed into
two parts as U = UentUloc with an entangling term

Uent(τ ) = exp(iJ̄ τ Sz,LSz,R/h̄), (9)

and an accumulated local phase

Uloc(τ ) = exp[−iK̄(Sz,L − Sz,R)τ/h̄]

≈ exp

[
−i

(
δEz + J̄ 2

2δEz

)
(Sz,L − Sz,R)τ/h̄

]
. (10)

For gate times being odd integer multiples of h̄π/J̄ , τ =
(2n + 1)h̄π/J̄ the time evolution (9) is equivalent to CZ up

to single-qubit z rotations [26]. Even multiples τ = τdc ≡
2h̄πn/J̄ correspondingly yield identity up to local Sz rotations
ei	LSz,L/2 and ei	RSz,R/2 for the left and right spins. From
Eq. (10) we find the following expressions for the phases:

	dc
L = −2πnK̄/J̄ , (11)

	dc
R = 2πnK̄/J̄ . (12)

The correction of these phases will be discussed in Sec. IV A.
The fact that the dc CZ operation can be canceled out will be
important for the ac gate discussed in Sec. IV.

A. High-fidelity dc implementation

So far, we have shown that we can implement two-qubit
gates between both spins using the exchange interaction,
however, there are several obstacles that need to be considered
for a high-fidelity performance. We consider the inclusion
of an echo mechanism for removing the excess phases in
the exchange gate as well as potentially unknown magnetic
gradients [30,31]. In the following we distinguish between
adiabatic and nonadiabatic exchange pulses which both are
experimentally feasible.

In the absence of exchange, J ≈ 0, and electric driving,
BQ

y (t) = 0, the Hamiltonian (3) can be written in the following
compact way:

H0 = Ez(Sz,L + Sz,R) + δEz(Sz,L − Sz,R)/2, (13)

which consists of two parts that both act in different sub-
spaces. The Ez term only acts in the even-parity space
spanned by {|↑↑〉 , |↓↓〉} giving rise to fast oscillations,
while the δEz term only acts in the odd-parity space
spanned by {|↑↓〉 , |↓↑〉}. For an efficient examination of
the exchange dynamics, we define new Pauli operators
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σx = S+,LS−,R + H.c., σz = Sz,L − Sz,R , and the projector
P = (1 − 4Sz,LSz,R)/2, acting only in the odd-parity space.
In a similar manner, we define the new Pauli operators τz =
Sz,L + Sz,R and τx = S+,LS+,R + S−,LS−,R , acting only on the
even-parity subspace.

In this basis, the (time-dependent) Hamiltonian (1) neglect-
ing transverse gradient fields is

H (t) = Ezτz + δEzσz/2 − J (t)[P − σx]/2, (14)

with J (t) being the externally controlled exchange. We also
note that a π rotation of both spins about the x axis corresponds,
up to a global phase, to the unitary τx + σx while a pair ofy-axis
pulses would correspond to τx − σx .

For both fast and slow exchange pulses of length T , we see
that the even-parity space only undergoes evolution according
to Ezτz, and thus will effectively factor out after inclusion of
the π pulses shown in Fig. 2(b). Meanwhile, the odd-parity
space undergoes nontrivial evolution, due to both the overall
phase evolution −J̄ T /2 and from the rotation in the subspace
about the axis (J,0,δEz).

We first consider fast instantaneous exchange pulses τr �
J/δE2

z . The time evolution in the odd-parity (P ) subspace is
then given by rotations for a controlled period about various
axes. A simple exchange pulse corresponds to

UJ = (1 − P )e−iT Ezτz/h̄

+Pei	x

[
cos(�J T ) − i

Jσx + δEzσz

2h̄�J

sin(�J T )

]
,

(15)

with �J = √
δE2

z + J 2/(2h̄). We note that for �J T = nπ

with integer n, we obtain a CPHASE gate with phase 	x =
J̄ T nπ/(2�J h̄) = J̄√

δE2
z +J 2

nπ , as the sin term vanishes. This

presents one way to remove the excess phase.
We now consider the full echo sequence consisting of two

exchange pulses and the rotations of individual spins in the
middle of the sequence. Towards the end of this section, we
would like to understand how this gate behaves in the rotating
frame in which we apply our single-qubit gates (motivated by
experiment [7]). If we envision starting UJ at time t1 and ending
it at time t2 = t1 + T , we need to know the rotating frame state
at the end of the sequence. We can move UJ to the rotating
frame defined by R(t) = e−i(ω1Sz,L+ω2Sz,R )t with the qubit fre-
quencies ω1 = (Ez + δEz/2)/h̄ and ω2 = (Ez − δEz/2)/h̄ by
applying the unitary transformation |ψrf(t)〉 = R†(t) |ψlab(t)〉.
Thus, we have

|ψrf(t2)〉 = R†(t2)UJ R(t1) |ψrf(t1)〉
= U rf

J (t2,t1) |ψrf(t1)〉 , (16)

where we move back to the laboratory frame, apply UJ , then
move back to the rotating frame.

In total, in the rotating frame, we find

U rf
J (t1 + T ,t1)

= (1 − P ) + Pei	x eiδEzT σz/4

×
[

cos(�J T ) − i
Jσμ + δEzσz

2�J

sin(�J T )

]
eiδEzT σz/4,

(17)

where σμ = cos(δEz(2t1 + T )/2)σx + sin(δEz(2t1+T )/2)σy .
Thus, the start time t1 enters in the definition of the rota-
tion axis μ = cos(δEz(2t1 + T )/2), sin(δEz(2t1 + T )/2),0)T .
While we do not necessarily want any such rotation, as the
diagonal term ∼J will perform a CPHASE-like evolution, we
will have to be careful to avoid unwanted effects from this
evolution.

One approach for removing the spin-flip effect [σμ term
in Eq. (17)] consists in switching J (t) adiabatically, thus,
τr � J/δE2

z . Considering parameters from Ref. [7], the adia-
batic condition corresponds to a rise time on the time scale
of >4 ns. Diagonalization of H (t) in the rotating frame
yields H̃ rf = −PJ (t)/2 + [�J (t) − δEz/2]σz with �J (t) =√

δE2
z + J (t)2/2. Small nonadiabatic corrections enter with a

σ+ term, which behaves in a similar manner to the σx term
given by UJ for the fast case. The net result of the adiabatic
case in the rotating frame is

U rf
ad = (1 − P ) + Pei	ade−iφzσz , (18)

with 	ad = J̄ T /2 and φz = (K̄ − δEz)T/2 = ∫ T

0√
δE2

z + J (t)2dt/2 − δEzT /2. Thus, we see that the adiabatic
J pulse leads to an extra single-qubit z rotation for both spins,
in addition to the desired CPHASE-like operation. Note that
this phase in the rotating frame of the individual spins is
equivalent to the phase given by Eqs. (11) and (12) for n = 1.

We now consider a more general solution to the extra
phase evolution (corresponding to a potentially undesired set
of single-qubit z rotations) as well as the extra rotation about
the μ axis. Specifically, we consider two π pulses about the x

axis on the qubits in-between two CPHASE-like unitaries [see
Fig. 2(b)]. For the adiabatic case, we have

Uc,ad = U rf
ad(4Sx,LSx,R)U rf

ad (19)

= (4Sx,LSx,R)[(1 − P ) + Pei	adeiσzφz ][(1 − P )

+Pei	ade−iσzφz ] (20)

= (4Sx,LSx,R)[(1 − P ) + Pe2i	ad ] (21)

= 4Sx,LSx,Re−2i	ad(Sz,L+Sz,R )UCPHASE, (22)

where UCPHASE = diag[1,1,1,e−2i	ad ]. For the special case of
2	ad = π , we find for our gate

Uπ,ad = (4Sy,LSy,R)UCZ. (23)

Returning to the fast pulse version of the gate [Eq. (17)],
we see that the same π pulses in the middle lead to

Uc,fast = U rf
J (t2 + T ,t2)(4Sx,LSx,R)U rf

J (T ,0) (24)

= U rf
J (t2 + T ,t2)(τx + σx)U rf

J (T ,0) (25)

= (1 − P )τx + P e2i	x eiδEz(t2+T )σz/2[c − in · σs]

× e−iδEzt2σz/2σxeiδEzT σz/2[c − in · σs], (26)

where c = cos(�J T ), s = sin(�J T ), and n = (J,0,δEz)/
(2�J ). In order to remove the terms proportional to n in
the above, we need the action of the intermediate rotation
e−iδEzt2σz/2σxe

iδEzT σz/2 to correspond to σy which requires
sin(δEz(t2 + T )/2) = ±1. Furthermore, we want the equiv-
alent unitary after the sequence

eiδEz/2(t2+T )σzσy
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to be σx , which in turn requires δEz(t2 + T )/2 = (2n +
1)π with integer n. Conveniently, these are the same
requirement.

IV. RESONANT SINGLE-STEP CNOT GATE

Additional controllability is given if the adiabatic dc ex-
change pulse is combined with microwave ac driving, BQ

y (t) ∝
cos(ωt + ϕ), matching the transition frequencies between the
two-qubit states which allows for direct conditional spin flips.
The gate sequence is outlined in Fig. 2(c) and the basic concept
is visualized in Fig. 2(a) in regime III. With the exchange
interaction turned on, the energy of both eigenstates |↑̃↓〉 and
|↓̃↑〉 is lowered by ∼J/2, providing in total six energetically
distinct resonance frequencies in the spectrum. There are four
entangling transitions corresponding to the four conditional
spin flips. For example, inducing a resonant spin flip between
the states |↑↑〉 ↔ |↓̃↑〉 yields a CNOT with the right qubit
as control and the left qubit as target gate as the following
truth-table shows:

|↑↑〉 → |↓↑〉 ,

|↑↓〉 → |↑↓〉 ,

|↓↑〉 → |↑↑〉 ,

|↓↓〉 → |↓↓〉 . (27)

In the remainder of this paper, we always refer to this im-
plementation of the CNOT, however, in experiments other
transitions can be resonantly driven as well, giving access to a
much larger set of two-qubit quantum gates.

From the eigenenergies (4)–(7), the corresponding reso-
nance frequencies of the four conditional transitions are given
as follows:

f L
|�R〉=|↓〉 ≡ |E(|↓↓〉) − E(|↑̃↓〉)|

= Ez + (−J −
√

J 2 + δE2
z

)/
2, (28)

f L
|�R〉=|↑〉 ≡ |E(|↓̃↑〉) − E(|↑↑〉)|

= Ez + (
J −

√
J 2 + δE2

z

)/
2, (29)

f R
|�L〉=|↓〉 ≡ |E(|↓↓〉) − E(|↓̃↑〉)|

= Ez + (−J +
√

J 2 + δE2
z

)/
2, (30)

f R
|�L〉=|↑〉 ≡ |E(|↑̃↓〉) − E(|↑↑〉)|

= Ez + (
J +

√
J 2 + δE2

z

)/
2. (31)

One important observation is that the splitting between the
conditional spin flips is always provided by exchange

f L
|�R〉=|↑〉 − f L

|�R〉=|↓〉 = f R
|�L〉=|↑〉 − f R

|�L〉=|↓〉 = J. (32)

A. High-fidelity ac implementation

We have shown so far that we can effectively cancel
out a resulting CPHASE gate from the dc dynamics of our
frequency-selective gate by appropriately timing the length
of the dc exchange pulse tdc = 2πn/J where n is a positive
integer. This can be thought of as applying CZ twice or any
even number of times such that each CZ is canceled out by
another one due to CZ2 = 1. However, there are two additional
effects which will disturb the gate if not treated appropriately.
The first effect results from the off-resonant driving of nearby
transitions; this effect becomes large when J is comparable to
the Rabi frequency � of the selectively driven spin transition.
A second effect originates from relative phase accumulation of
the spins during the microwave drive. Below, we discuss both
effects and how they can be avoided.

In the experiment described in Ref. [7], the gates are driven
at the resonance frequency ω = f L

|�R〉=|↑〉 during a dc exchange
pulse which flips the left spin if and only if the right spin is
in the state |�R〉 = |↑〉, thus inducing a transition between
the |↑↑〉 and |↓̃↑〉 states. However, the energy separation of
the transition frequency f L

|�R〉=|↑〉 and the transition frequency
for an opposite right spin |�R〉 = |↓〉 is given by the exchange
interaction strength J [see Eq. (32)]. In the regime of operation
[7] � ∼ J ≈ 20 MHz the transition between the states |↑↓〉
and |↓̃↓〉 is also driven and gives rise to off-resonant Rabi
dynamics. Other transitions, f R

|�L〉=|↑〉 and f R
|�L〉=|↓〉, are even

further off resonant because they are separated in energy by
δEz � J,�, and will be neglected here.

Starting with the Hamiltonian (3) in the rotating frame
H̃ (t) = R̃†HR̃ + i ˙̃R†R̃ with R̃ = exp[−iωt(Sz,L + Sz,R)/h̄]
and neglecting fast oscillations, we find in the instantaneous
adiabatic basis {|↑↑〉 , |↓̃↑〉 , |↑̃↓〉 , |↓↓〉} for J � δEz:

H̃ (t) ≈ 1

2

⎛⎜⎜⎜⎜⎜⎜⎝
−J + (

δEz + J 2

2δEz

) − δω −iα∗
1 −iβ∗

1 0

iα1 −J + (
δEz + J 2

2δEz

)
0 −iβ∗

2

iβ1 0 −J − (
δEz + J 2

2δEz

) −iα∗
2

0 iβ2 iα2 J − (
δEz + J 2

2δEz

) + δω

⎞⎟⎟⎟⎟⎟⎟⎠. (33)

Here,

α1,2 ≈ [±BL,1
y + BR,1

y J/(2δEz)
]

eiθ , (34)

β1,2 ≈ [∓BR,1
y + BL,1

y J/(2δEz)
]

eiθ (35)

are the effective microwave driving amplitudes after
transforming into the adiabatic basis. Nearby the reso-
nance frequency ω − δω = f L

|�R〉=|↑〉 ≈ Ez − {δEz + J [1 −
J/(2δEz)]}/2, and β1,2 � δEz, the Hamiltonian (33) decou-
ples into two blocks {|↑↑〉 , |↓̃↑〉} and {|↑̃↓〉 , |↓↓〉} which
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FIG. 3. Schematic plot of the resonant (blue) and off-resonant (red) transition probabilities with (a) desynchronized and (b) synchronized
Rabi frequencies � and �̃ [see Eq. (38)]. A CNOT gate is provided at time τCNOT where the resonant driving exactly flips the spin (p↑ = 1) for
|�R〉 = |↑〉 (blue). (a) Using an arbitrary Rabi frequency �, we find that the frequencies are desynchronized and the off-resonant driving also
yields a finite population (p↑ > 0) of the flipped spin for |�R〉 = |↓〉 (red). (b) Synchronized resonant Rabi frequency � and off-resonant Rabi
frequency �̃ which avoids any undesired population for |�R〉 = |↓〉. We choose m = 0 and n = 1 for the fastest realization of the synchronized
CNOT gate yielding an ac pulse length τCNOT ≈ 144 ns. Note that to enhance the visibility, we rescaled the off-resonant state probabilities in
(a) by a factor of 5.

are separated in energy by ∼δEz [see Eq. (32)] and evolve
independently in time.

For δω = 0, only f L
|�R〉=|↑〉 (top left block) is resonant and

yields full Rabi oscillations with a Rabi frequency � = |α1|/h̄
while f L

|�R〉=|↓〉 (bottom right block) is detuned (off resonant)
by J , therefore, performing partial spin flips with the detuned
Rabi frequency �̃ =

√
|α2|2 + J 2/h̄. Since the time evolution

of each 2 × 2 block can be computed individually, we find the
following time evolutions of each block for the phase θ = 3π/2
of the driving:

U|�R〉=|↑〉 = e− itf1
2

[
cos

(
�t

2

)
1 + i sin

(
�t

2

)
σx

]
, (36)

U|�R〉=|↓〉 = e− itf2
2

[
cos

(
�̃t

2

)
1 + i sin

(
�̃t

2

)
×

( |α2|
2 h̄ �̃

σx − J

2 h̄ �̃
σz

)]
(37)

with the frequencies h̄f1 = −J + (δEz + J 2

2δEz
) and h̄f2 =

−δEz − J 2

2δEz
. Setting t = τCNOT ≡ π (2m + 1)/� with inte-

ger m yields a spin flip in the |�R〉 = |↑〉 block. We note
that Eqs. (36) and (37) also hold for arbitrary θ under the
replacement σx → − cos(θ )σx + sin(θ )σy which leads to a
conditional rotation about μ = (− cos(θ ), sin(θ ),0)T instead
of a CNOT [see Eq. (27) for our definition]. In order to cancel
the dynamics of the off-resonant states, we synchronize the
Rabi frequencies by setting

� = 2m + 1

2n
�̃, (38)

with an integer n. This can be achieved by adjusting the ac
driving strength BL,1

y . Considering BL,1
y = BR,1

y , we find the
following analytical result for the ac driving strength:

BL,1
y = an,m ≡ ± J√

4n2

(2m+1)2

(
1 + J

2δEz

)2 − (
1 − J

2δEz

)2
,

(39)

with integer m and n which fulfills Eq. (38). A comparison of
the dynamics with and without synchronization is depicted in
Fig. 3.

At this point, the time evolution in the rotating frame R̃ is
given by

U (τCNOT) = e−i	ac
R Sz,RUCNOT (40)

which is up to a local z rotation on the right spin the desired
CNOT operation. The phase 	ac

R consists of two contributions.
During the CNOT gate a dynamic phase 	

ac,dyn
R is acquired on

the right (control) spin originating from the energy difference
between the two blocks in Eq. (33). While states with |�R〉 =
|↑〉 are oscillating with e− itf1

2 , states with |�R〉 = |↓〉 oscillate
with e− itf2

2 , which yields a relative phase after the ac spin flip
	

ac,dyn
R = −(f2 − f1)τac/2, on the right spin [see Eqs. (36) and

(37)]. Additionally, we observe a holonomic phase [32] 	
ac,hol
R

on the right spin which depends only on the initial and final
states and does not depend on the taken path in parameter
space. From Eqs. (36) and (37) it follows directly that 	ac,hol

R =
−π (m − n + 1/2) because cos(πn) = (−1)n and sin[π (2m +
1)/2] = (−1)m which only depends on the chosen time interval
τCNOT and the ac driving strength BL,1

y . We find the following
analytic expressions for the local Sz rotation ei	RSz,R/2 on the
right (control) spin after the ac spin flip:

	ac
R = −π

⎡⎣(
m − n + 1

2

)

− 2m + 1

an,m

(
1 + J

2δEz

)(
δEz + J 2

δEz

− J

2

)]
. (41)

The combined gate consists of the dc exchange pulse, the
driven ac field, the ac phase error [Eq. (41)], and the dc
phase phase errors [Eqs. (11) and (12)]. Therefore, Eqs. (11),
(12), and (41) have to be combined in order to find the total
phase accumulated during the full CNOT gate. Consider-
ing the rotating frames for the dc and ac phase accumula-
tions, we find the following results in the rotating frame of
each individual spin R = exp[−it(ω1Sz,L + ω2Sz,R)/h̄], with
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0
0

FIG. 4. Simulated CNOT gate fidelity (in percent) as a function
of the compensated phases 	L and 	R on the left spin (target) and
right spin (control) after the ac drive. Compensation is provided
for a z rotation Ẑ(	) on the left spin with 	l = 2πkl − 	L and
on the right spin 	r = 2πkr − 	R with integers kl and kr , thus,
	 = (	l,	r ) ≈ (−0.03π,−0.469π ) (blue and red dashed lines). For
the simulation we used the following parameters related to the
experiment in Ref. [7]: J = 19.7 MHz, δEz = 210 MHz, τr = 5 ns,
τCNOT = 94 ns [corresponding to α = 1/(2τCNOT), τdc = 198 ns, and
m = 0 and n = 1 in Eq. (38)].

ω1 = (Ez + δEz/2)/h̄ and ω2 = (Ez − δEz/2)/h̄ (consistent
with [7]):

	L = 	dc
L + δEz

2
τdc +

√
δE2

z + J 2

2
τac, (42)

	R = 	dc
R − δEz

2
τdc + 	ac

R −
√

δE2
z + J 2

2
τac. (43)

This additional phase can either be compensated by adjusting
J such that both phases are a multiple of 2π (not possible
in our regime of operation) or by including additional z

rotations on the left and right spins directly after the CNOT
gate with angles 	l = 2k1π − 	L and 	r = 2k2π − 	R with
integers k1,2. Simulations where we numerically integrate the
time-dependent Schrödinger equation ih̄�̇(t) = H̃ (t)�(t) for
the full Hamiltonian (33) support our analysis (see Fig. 4).
The highest fidelity can indeed be found after correcting the
described phase shifts. At this point, it is worth mentioning that
z rotations in the experiment in Ref. [7] and similar experiments
[9,10] can be performed by modifying the reference phase for
the individual spins. This can be done rapidly and accurately
in software with no additional microwave control required.

B. Charge noise analysis

In semiconductor devices, charge noise is omnipresent [33].
In the simplest model, charge noise can be described as fluctu-
ations of the electric potentials near the dot. Thus, charge noise
couples to the two-qubit systems mainly through the exchange
interactions due to its dependence on the detuning, tunneling,

(a) (b)

(c) (d)

0 0

FIG. 5. Zoom-in of the simulation in Fig. 4 in the pres-
ence of charge noise fluctuations with strength (a) σδJ = 0 MHz,
(b) σδJ = 0.33 MHz, (c) σδJ = 0.67 MHz, and (d) σδJ = 1.33 MHz.
For the simulation, the fluctuations are assumed to be quasistatic and
Gaussian distributed with standard deviation σδJ and mean 〈δJ 〉 ≈ 0.

and confinement of the spins [16,17]. To be precise, charge
noise couples also to single spins through the same mechanism
that allows EDSR to rotate the spin though fluctuations of the
electron positions. This effect, however, is small as evidenced
by Ref. [10], thus will be neglected in the analysis below.

In lowest order J → J + δJ where δJ are fluctuations
of the exchange energy due to charge noise, we find the
following first-order corrections to the diagonal Hamil-
tonian with eigenenergies (4)–(7) in the adiabatic basis
{|↑↑〉 , |↓̃↑〉 , |↑̃↓〉 , |↓↓〉}:

Hnoise = 2JδJ

δEz

(
S̃L

z + S̃R
z

) − 2δJ S̃L
z S̃R

z . (44)

The first term in Eq. (44) induces single-qubit dephasing but
is highly suppressed in the case where J � δEz since it has
strength ∝J/δEz. Therefore, large magnetic field gradients are
beneficial for operating the two-qubit gate. The second term
couples longitudinally to the two-qubit gate operation since
it has the same form as the dc pulse, ∝SL

z SR
z , and reduces

the fidelity of the resulting two-qubit gate that only depends
on the bare charge noise fluctuations δJ . In experiments [9],
this is the limiting factor for the gate fidelity since simple echo
protocols would also filter out the desired two-qubit interaction
ruling out their use. Simulations assuming quasistatic noise
show that for σδJ ≡

√
〈δJ 2〉 − 〈δJ 〉2 = 0.33 MHz, two-qubit

gate fidelities >97% are still possible [see Fig. 5(b)]. However,
fluctuations twice (four times) as large already limit the gate
fidelity to about ≈93% (≈77%) [see Figs. 5(c) and 5(d)],
which is problematic for fault-tolerant quantum computation.
However, mitigation of these effects is still possible through
advanced pulse shaping [34], composite pulse sequences [35],
complex dynamical decoupling sequences [36], and a reduc-
tion of the amplitude of the fluctuations, i.e., operating at a
charge noise sweet spot.
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V. CONCLUSION

In this paper, we have presented high-fidelity implementa-
tions of a dc-pulsed CZ gate and a single-shot resonant CNOT
gate. For the dc-pulsed CZ gate, we have provided a high-
fidelity implementation using dc exchange pulses. We have
analyzed two regimes for the exchange pulses, slow (adiabatic)
and fast (instantaneous) exchange pulses, and have described
how to compensate for residual spin-flip and phase errors. In
the adiabatic regime, spin-flip errors are suppressed by the
magnetic field difference and we have identified the phases that
the individual spins accumulate during the two-qubit operation.
By interrupting the CZ gate with single-qubit spin flips to form
a spin-echo sequence, spin-flip errors and local phases which
the individual spins acquired during the CZ gate can be avoided
even for the nonadiabatic exchange pulses.

For the single-shot resonant CNOT gate, we have presented
a high-fidelity implementation through frequency-selective
resonant modulations of the two-qubit transitions. By selecting
different transition frequencies, a larger set of two-qubit
quantum gates is accessible, allowing for more efficient algo-
rithms. We have shown that all intrinsic errors due to all relevant
off-resonant transitions can be compensated by fine tuning

the ac driving amplitude such that the resonant and the off-
resonant oscillations are synchronized. Additionally, we have
identified phases which the individual spins accumulate during
the two-qubit operation. These phases can be compensated
for by performing single-qubit z rotations after each CNOT
gate. Our two-qubit gate implementation also incorporates
a reduction of charge noise by suppression through large
magnetic field gradients. Using the synchronization technique
and the analytic values of the accumulated phases, we predict
that existing experiments will be able to reach higher two-qubit
gate fidelities exceeding 97% under realistic assumptions. This
opens the path to large-scale quantum computation previously
limited by low-fidelity two-qubit gates.
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