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Creating arbitrary quantum vibrational states in a carbon nanotube
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We theoretically study the creation of single- and multiphonon Fock states and arbitrary superpositions of
quantum phonon states in a nanomechanical carbon nanotube (CNT) resonator. In our model, a doubly clamped
CNT resonator is initialized in the ground state, and a single electron is trapped in a quantum dot which is formed
by an electric gate potential and brought into the magnetic field of a micromagnet. The preparation of arbitrary
quantum phonon states is based on the coupling between the mechanical motion of the CNT and the electron spin
which acts as a nonlinearity. We assume that electrical driving pulses with different frequencies are applied on the
system. The quantum information is transferred from the spin qubit to the mechanical motion by the spin-phonon
coupling, and the electron spin qubit can be reset by the single-electron spin resonance. We describe Wigner
tomography which can be applied at the end to obtain the phase information of the prepared phonon states.
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I. INTRODUCTION

The peculiar feature of quantum states is that they can be in
a superposition of their basis states. Preparation, manipulation,
and measurement of Fock states, which are quantum states
with fixed numbers of quanta, and their superpositions are
especially important for quantum computation with trapped
ions [1]. The photon Fock states are widely used in quantum
cryptography [2,3]. The harmonic phonon states of a single
trapped ion have been used as the control qubit with the
hyperfine ground state as the target qubit in an experimental
realization of two-qubit controlled-NOT quantum gate [4]. The
preparation of Fock states and their arbitrary superpositions
in linear resonators has been proposed by transferring
the quantum information of a nonlinear quantum system
which can be controlled by a classical source [5] and has
already been realized experimentally by coupling a trapped
ion [6] or a superconducting quantum circuit [7,8] to a
resonator. Recently, single phonon states were proposed as
qubit states in optomechanical schemes [9]. Measurements
of the quantum ground state and preparation of a single
phonon state of a piezoelectric resonator coupled to a
superconducting quantum bit have been achieved a few years
ago [10]. Heralded single-phonon preparation is obtained by
detecting the photon of the photon-phonon pair generated
by optomechanical parametric down-conversion [11]. The
improvement of photon detection in the laboratory promises
the precise single-photon counting allowing for single-phonon
counting [12]. In nanomechanical or micromechanical
systems, cooling the mechanical system [13,14] to the ground
state and preparing nonclassical states are required to operate
mechanical resonators in the quantum regime. Ground-state
cooling of a mechanical system has been achieved with direct
or active cooling in several laboratories [10,15].

Both electrical and mechanical properties of carbon nan-
otubes (CNTs) make them very interesting for quantum
physics. Because of the additional valley degrees of free-
dom, semiconducting CNTs are promising candidates for
valleytronics and valley-spin-based technology [16–18]. The
curvature induced spin-orbit coupling in CNTs has been
predicted to be significant [19–21] and been observed in
the laboratory [22]. A magnetic field leads to the lifting
of the fourfold spin and valley degeneracy [23–28]. On the

other hand, suspended nanomechanical CNTs have high and
widely tunable resonance frequencies and enormous quality
factors [29–32], hence the vibrational modes of CNTs last
long until they are totally damped out (Fig. 1). The two lowest
energy levels of anharmonic nanomechanical CNT oscillators
have been proposed as the two states of one qubit in quantum
information processing [33]. The coupling of the electron
spin and the mechanical motion of the CNT via the intrinsic
spin-orbit coupling provides a nonlinearity [34,35]. Many the-
oretical proposals for the read-out of the vibrational frequency
of a suspended CNT [36] and the electron spin states [37],
for obtaining single- and two-qubit quantum gates [38,39]
and cooling a suspended CNT [40], are based on this spin-
phonon coupling. Recently a theoretical work has proposed the
ground-state cooling of a suspended carbon nanotube (CNT)
resonator between a normal and superconducting lead by the
interference of vibration-assisted Andreev reflections [41].

We present theoretically how to prepare the Fock states and
arbitrary quantum phonon states based on the spin-phonon
interaction in a suspended CNT. The basic working principle
is similar to the one used previously for superconducting
qubits [7,8] and consists of the following steps. Two-electron
spin states split by a magnetic field are defined as our qubit.
The qubit flip, the qubit-phonon swap, and the phase operations
are applied alternately to obtain an arbitrary quantum vibration
state of the CNT. The qubit is flipped from the ground state
|↓〉 into the excited state |↑〉 by the electron spin resonance
which is obtained in the presence of an external ac electric
field matching the qubit frequency. The quantum dot is moved
back and forth by the ac electric field hence the electron
in the quantum dot experiences effectively a time-dependent
magnetic field. A qubit-phonon swap converts the energy from
the excited qubit state to the resonator from the ground phonon
state by the spin-phonon coupling. The qubit is brought into
resonance with the phonon to have an effective spin-phonon
coupling strength by electrostatically moving the quantum dot
in the stray field of a micromagnet [42–44]. A phase rotation
of the spin can be applied to adjust the relative phase of the
qubit. A sequence which alternates these three operations is
applied until the desired quantum phonon state is obtained.

This paper is organized as follows. The quantum mechan-
ical system and the effective Hamiltonian are introduced in
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FIG. 1. Schematic view of a single electron being trapped in a
quantum dot (QD) formed by gate voltages in a suspended carbon
nanotube (CNT). The resonance frequency of the CNT can be
adjusted by the voltages on the back gates. An external ac electric field
is applied on the CNT by the antenna. The micromagnet is deposited
in the vicinity of the CNT. The single electron wave function can
be electrostatically shifted by applying voltage on the back gates.
Therefore the spin splitting of the electron in the slanting magnetic
field of the micromagnet can be manipulated.

Sec. II. The respective time-evolution operators for the three
necessary operations are presented in Sec. III. In Sec. IV, the
steps to obtain Fock states and arbitrary quantum phonon states
are explained. In Sec. V, we discuss the Wigner tomography for
extracting the full information of the quantum phonon states.

II. MODEL

We assume that a single electron is trapped within a
quantum dot (QD) formed in a suspended CNT which lies
between two supports (Fig. 1). The QD is controlled by
voltages on the electrodes at the ends of the CNT. The
resonance frequency of the CNT ωp can be adjusted by the
back gates. The strength and the frequency of the electric
driving field are denoted as λ and ω. In CNTs, there exists a
curvature induced spin-orbit interaction which already splits
the degeneracy of spin in each valley without any magnetic
field. With a magnetic field B applied along the CNT, the
fourfold energy degeneracy of the valley and the spin is
completely lifted. The electrons in the K and K ′ valleys move
in the directions of clockwise and anticlockwise around the
circumference of the CNT, respectively. Two spin states in
the same K ′ valley cross at the field B∗ = �SO/2μB where
�SO is the spin-orbit interaction and μB is the spin magnetic
moment. Since these two spin states are well separated in
momentum space from the states in the other valley, we
choose them as the qubit. The energy splitting of the qubit
is �ωq = geμB(B − B∗) where B is the applied magnetic
field, ωq denotes the qubit frequency, and ge is the electron
g factor [37]. The micromagnet, which produces a slanting
magnetic field, can be deposited near the CNT such that the
QD is located in the field. One can electrostatically move
the QD and hence adjust the qubit frequency. The frequency
difference of the energy between the phonon and the qubit is
denoted as � = ωp − ωq . An external ac driving electric field
is applied to the system for the spin flip operation.

It is the spin-phonon interaction that converts the excitation
of the qubit into quantum vibrational motion. The spin-phonon
interaction applies with both the deflection and the deformation
phonon modes. In the following, we only consider a single
polarization of the deflection mode of the CNT. It is possible

to make generalizations to other deflection modes and to the
deformation modes. We assume that the resting CNT axis
is along the z axis. The vibration of the CNT causes local
changes in the direction of the CNT axis, and hence the
tangent vector t(z) is dependent on the displacement u(z) of
the CNT. The interaction of the spin and the deflection phonon
mode is induced by the spin-orbit interaction HSO = �SOσ ·
t � �SOσz + �SO(dux(z)/dz)σx . Here �σ = (σx,σy,σz) is the
vector of Pauli matrices, ux(z) is assumed as the displace-
ment at point z along the CNT in the x direction, and
ux(z) ∝ f (z) l0√

2
(a + a†) is a function of phonon creation and

annihilation operators a† and a, where f (z) is the waveform
of the QD and l0 is the zero-point amplitude of the phonon
mode [35]. The spin-phonon interaction strength of the QD is
g = �SO 〈f ′(z)〉 l0/2

√
2. The Hamiltonian for this system is

(for the derivation see the Supplemental Material of Ref. [35])

H = H0 + Hd + Hsp,

H0 = �ωq

2
σz + �ωpa

†a,

Hd = 2�λ(a + a†) cos(ωt),

Hsp = �g(a + a†)(σ+ + σ−),

(1)

where σ+ and σ− are qubit raising and lowering operators,
respectively. Here, H0 is the undisturbed Hamiltonian of the
phonon mode and the electron spin qubit. Hd contains the
external ac electric driving term where λ is the driving strength
and ω is the driving frequency, and the third part Hsp denotes
the spin-phonon coupling which is induced from the spin-orbit
coupling.

We assume that the detuning fulfills � � g,λ. By applying
a Schrieffer-Wolff transformation, an effective Hamiltonian
from Eq. (1) is obtained in the interaction picture with respect
to H0 [38]:

H̃ ′
I = −�ασx + �βnσz, (2)

where

α = λgωp

(
ω2 − 2ω2

p + ω2
q

)
(
ω2 − ω2

p

)(
ω2

p − ω2
q

) ,

βn = 1

2
ωq − 1

2
ωq

2(2n + 1)g2

ω2
p − ω2

q

− 1

2
ω.

(3)

The eigenstates after the Schrieffer-Wolff transformation are
slightly different from the original states because the higher
order terms in the approximation are omitted. In the effective
Hamiltonian, the term σx (σz) denotes a rotation of the spin
about the x (z) axis of the qubit. We can obtain one of these two
spin rotations separately by setting the coefficient of the other
rotation to zero. For example, to obtain a rotation about the
axis x, we set βn to zero as shown in Fig. 2. The rotations about
the x axis can be used for obtaining electron spin resonance
(ESR) and flipping the qubit states in the preparation of the
arbitrary quantum phonon states. The rotations about the z axis
can be used as a phase operation. Here, n denotes the phonon
number.

The spin-phonon interaction is used to exchange the infor-
mation between the qubit and the phonon where the driving
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FIG. 2. The energy-level diagram of the spin-phonon states.
(a) The electron spin resonance between |↓ 0〉 and |↑ 0〉 (blue
dashed). The qubit is detuned from the phonon. The parameter α

is the effective strength of the spin operator σx in the effective
Hamiltonian (2). (b) The qubit is brought into resonance with
the phonon in the slanting magnetic field of the micromagnet
by electrostatically moving the QD. The spin-phonon interaction
strength is g (red solid). Phase operation σz with the strength β is
applied to adjust the relative phase of the state (green dotted).

field is off. The Hamiltonian without the external driving Hd

in the rotating wave approximation in the interaction picture
with respect to H0 is

H ′′
I = −��σz + �g(aσ+ + a†σ−). (4)

If a large detuning � is present, the effective coupling between
the spin and the phonon is too small to convert the energy
from the qubit to the resonator. To obtain a perfect swap of
the qubit and the phonon, one can tune the frequency of the
qubit to be in resonance with the phonon as shown in Fig. 2.
Together with the slanting magnetic field of a micromagnet,
electrostatically tuning the electron wave function of the QD
serves this purpose [42–44].

III. TIME-EVOLUTION OPERATORS

Since we have the effective Hamiltonian for the qubit flip
and the phase operations in Eq. (2), and for the spin-phonon
swap in Eq. (4), we can derive their time-evolution operators
with the aim of calculating the sequence of pulses for obtaining
arbitrary quantum phonon states.

The interaction Hamiltonian in Eq. (2) can be written
as H̃ ′

I = b · σ . The time-evolution operator of the ESR for
the qubit flip operation, which is obtained by e−ib·σ t =
cos(|b|t)1 − i sin(|b|t)(b̂ · σ ), with the Hamiltonian in Eq. (2)
in the basis {|gn〉 , |en〉} with the phonon number n, is found
to be

Rn = e−iH̃ ′
I t/�

=
(

cos(ϑt) + i
βn

ϑ
sin(ϑt) i α

ϑ
sin(ϑt)

i α
ϑ

sin(ϑt) cos(ϑt) − i
βn

ϑ
sin(ϑt)

)
,

(5)

where ϑ = √
α2 + β2

n .
We can obtain the time-evolution operator of the phase gate

with α = 0 and ω = 0 in Eq. (3), and the electron spin rotates
about the z axis in the magnetic field. Hence we obtain the

phase operation,

Pn = e−iH̃ ′
I t/� =

(
eiβnt 0

0 e−iβnt

)
, (6)

where the coefficients βn are different for the phase operators
with different phonon numbers.

The time-evolution operator for the qubit-phonon swap with
the Hamiltonian in Eq. (4) in the basis of {|n ↑〉 , |n + 1 ↓〉}
with n = 0,1 . . . is

Un = e−iH̃ ′′
I t/�

=
(

cos(gηnt) + i�
sin(gηnt)

ηn
−i

√
n + 1 sin(gηnt)

ηn

−i
√

n + 1 sin(gηnt)
ηn

cos(gηnt) + i�
sin(gηnt)

ηn

)
,

(7)

where ηn =
√

n + 1 + �2/g2. The swap between the qubit
and the phonon can be achieved best when they are in
resonance. For the resonant case � = 0, we have a simple
time-evolution operator of the qubit-phonon swap

Un = e−iH̃ ′′
I t/� =

(
cos(gt

√
n + 1) −i sin(gt

√
n + 1)

−i sin(gt
√

n + 1) cos(gt
√

n + 1)

)
.

(8)

It is worth pointing out that the qubit flip and the qubit-
phonon swap both depend on the phonon numbers. States with
different phonon numbers have different coefficients hence
require different times for the same swap or flip operations. For
example, the swap operations of |↓ 1〉 → |↑ 0〉 and |↓ 2〉 →
|↑ 1〉 require different times because the phonon numbers are
different. This leads to dephasing in the electronic sector in
the state preparation protocol. The dephasing can be canceled
in the process of preparation by applying uncompleted swap
and flip operations together with phase operations.

IV. ARBITRARY QUANTUM PHONON STATES

Now we explain the operation sequence of obtaining
arbitrary phonon Fock states and superpositions of phonon
Fock states. To obtain a phonon Fock state |ψn〉 = |↓ n〉 from
the ground state |↓ 0〉, a sequence of operations with the
qubit-phonon swaps and qubit flips for n steps is applied as

|ψn〉 = U (τn)R(r)...U (τ1)R(r) |↓ 0〉, (9)

where τn = π/2
g
√

n
and r = π/2

α
are the timescales of the

operations. Here we assume βn = 0 in qubit flip operators
R. Each step contains a qubit-phonon swap and a qubit flip,
and the highest phonon number increases by 1 after each step.
By applying the ac electrical field in the presence of the large
detuning, the qubit flips from |↓ n〉 to |↑ n〉 completely in
each qubit flip operation. The qubit-phonon swap transfers the
energy completely from the excited spin state to the resonator,
i.e., from |↑ n〉 to |↓ n + 1〉.

To obtain the arbitrary phonon state |ψ〉 = ∑
n cn |↓ n〉, a

sequence of operations with n steps is applied on the initial
state |↓ 0〉 as

|ψ〉 = U (τn)P (lnR)R(rn) . . .

. . . P (l1U )U (τ1)P (l1R)R(r1) |↓ 0〉 . (10)
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A sequence of one qubit flip R with the operation time rn where
n denotes the step number, one qubit-phonon swap operation
U with the time interval τn, and two phase rotation operations
P with the operation time lnj where j = U,R denotes the
nearby j operation for which the phase operation adjusts
the phase of the state, is applied in each step, except only
one phase rotation is applied in the last (nth) step. The sequence
is calculated backwards from the target state to the ground state
|↓ 0〉. It is easier to derive the sequence in the reverse time
order, which is from the target state with multiple Fock states
to the simple ground state, than in the forward time order. With
the reverse time order, the highest phonon number is decreased
by 1 in each step and the operation times are determined by
transferring all the occupation from the highest phonon Fock
state to the excited qubit state and then removing the excitation
of the qubit. With the normal time order it is difficult to choose
the operations time and the intermediate states. We can apply
one step of the sequence of operations for obtaining the state
|↓〉 (|0〉 + |1〉) as

|↓〉(|0〉 + |1〉) = U (τ1)P (l1R)R(r1) |↓ 0〉 . (11)

Here we apply a complete swap U (τ1) and an uncompleted
qubit flip R(r1). The phase operator P (l1R) is applied to
regulate the relative phase of the state. The state |↓〉 (|0〉 + |1〉)
will transfer into (|↑〉 + |↓〉) |0〉 under the complete swap oper-
ation. The spins (|↑〉 + |↓〉) |0〉 are flipped in the uncompleted
qubit flip operation R(r1) so that only |↓ 0〉 is left, while a
complete qubit flip would lead to an unwanted state |↑ 0〉
which causes dephasing. We assume the parameter βn = β =
0 in the qubit flip operator R. The analytical expressions

of the operation times are obtained as r1 = − 3π
4 +2πC1

α
, l1 =

− 2i(ω2
p−ω2

q )(iπ+2iπC2)
ωq (2g2−ω2

p+ω2
q ) , and τ1 = π/2+2πC3

g
, where Ci=1,2,3 are

non-negative integers.
To explain how to apply the sequence of operations, we

consider an example of obtaining the state |↓〉 (|0〉 + i |2〉). As
shown in Fig. 3, the sequence is calculated in the time reversed
order from |↓〉 (|0〉 + i |2〉) to |↓ 0〉, and we obtain

|↓〉 (|0〉 + i |2〉) = U (τ2)P (l2R)R(r2)P (l1U )U (τ1))P (l1R)

×R(r1) |↓0〉. (12)

Figure 3(a) shows the frequencies of the phonon ωp, the
qubit ωq , and the driving ω as a function of the time. We
can see that the qubit frequency is brought into resonance
with the phonon frequency during the qubit-phonon swap. In
the qubit flip operation, the driving is applied and a large
detuning � of the qubit frequency and the phonon frequency
is required. Completed operations of the qubit-phonon swap
and the qubit flip are applied in order to decrease the highest
phonon number by one in step number 2. In qubit flip operation
R(r2), the state |↑ 1〉 flips completely to |↓ 1〉. However, due
to the spin-phonon coupling strength and the spin flip strength
both depending on phonon numbers, dephasing of the states
with lower phonon numbers appears in the process. Here since
the qubit flip depends on phonon numbers, the state |↓ 0〉
could not fully flip to the state |↑ 0〉 in time r2 therefore
causing the dephasing in the electronic sector. The remaining
state |↑ 0〉 could be swapped to the state |↓ 1〉 in the next
qubit-phonon swap operation, which would be with the highest

FIG. 3. (a) Sequence of operations for obtaining arbitrary quan-
tum phonon states. An external ac electrical field with the frequency
ω (blue dashed) is applied for obtaining the qubit flip in the time
intervals r1 and r2, and ωp is the frequency of the phonon mode (red
dotted) in the CNT. The large detuning � is required for the qubit
flip operation R. For the qubit-phonon swap U (τ ), the qubit with the
frequency ωq (black solid) is brought into resonance with the phonon
that ωp = ωq by moving the QD in the slanting magnetic field of the
nearby micromagnet. The swap operation’s time intervals are τ1 and
τ2. The phase operations P (l1U ), P (l1R), and P (l2R) adjust the relative
phase of the state. (b) Diagram for calculating the operation sequence
in a backwards direction for obtaining the superposition of Fock states
|↓〉 (|0〉 + i |2〉) from the ground state |↓ 0〉. The operation U (τ2) is
applied to fully transfer the state |↓ 2〉 to the state |↑ 1〉, and the flip
operation R(r2) is applied to fully transfer the state |↑ 1〉 to |↓ 1〉
in step number 2. In step number 1, phase operations are applied to
adjust the relative phases to cancel some states (red crosses), e.g.,
the states |↓ 1〉 and |↑ 0〉 in the following qubit flip or qubit-phonon
swap.

phonon number, therefore we want to cancel |↑ 0〉 to avoid
this. To cancel this dephasing we apply phase operations to
adjust the relative phase of the state and perform uncompleted
qubit flips and qubit-phonon swaps. The phase rotations are
necessary when the next swap or flip operations are not applied
completely. When a spin up state and the Fock state with the
highest phonon number need to be canceled, we apply the
phase operation and an uncompleted qubit flip. To cancel a
spin down state with the highest Fock state, we apply a phase
operation and a qubit-phonon swap operation. Therefore in
step number 1 the phase operator P (l1u) is applied to adjust the
relative phase of the state, and the qubit-phonon swap U (τ1) is
applied partially to cancel |↓ 1〉. Hence we have only |↑ 0〉 and
the leftover state |↓ 0〉 and the rest of the operation is similar
with the relevant part in the preparation of |↓〉 (|0〉 + |1〉).
For obtaining other superpositions of Fock states with larger
highest phonon numbers n or with more than two Fock states,
one repeats the second step n times.

205413-4



CREATING ARBITRARY QUANTUM VIBRATIONAL STATES . . . PHYSICAL REVIEW B 94, 205413 (2016)

V. WIGNER TOMOGRAPHY

One can use Wigner tomography [45–49] to obtain the
relative phase of the quantum phonon states which has been
used for quantum photon states [7,8]. Wigner tomography is
based on representing the Wigner function as a quasiprob-
ability distribution on the complex phase space. The Wigner
function can be written as the expectation value of the operator
D†(−α)D(−α) [8],

W (α) = 2

π
〈ψ |D†(−α)D(−α)|ψ〉 . (13)

To obtain D(−α), the resonator is driven with an ac electric
field pulse as −α = (1/2)

∫
λ(t)dt , where α is the phase space

amplitude of the resonator and D is the displacement operator
D(−α) = D†(α) = exp(α∗a − αa†). For the parity operator
, Fock states have eigenvalues 1 and −1 for even and odd
phonon numbers, respectively. For mixed states, Eq. (13) can
be written as a trace

W (α) = 2

π
Tr(D(−α)ρD(α))

= 2

π

∑
n

(−1)nρ ′
nn(−α), (14)

where ρ is the density matrix ρ = ∑
i Pi |ψi〉 〈ψi | of the res-

onator before being displaced [8]. For the displaced resonator,
the density matrix is ρ ′ = D(−α)ρD(α).

To calculate the Wigner function, we need to obtain the
phonon numbers ρnn from the probability Pn [50]. In principle,
the phonon number n can be measured directly with a charge
detector [37], but for small numbers of phonons in the CNT the
accuracy is limited. After the displacement pulse, one brings
the qubit on resonance with the resonator for a variable time
and then performs the readout of the qubit. The qubit can
be read out by the mechanical response of the resonator to
the pulsed external driving [37]. States with different spin
states react to the external driving differently such that the
excited spin states can be driven to other states with larger
phonon numbers. Therefore one can tell apart the spin states by
measuring the amplitude of the resonator via a charge detector.
From the probability Pu(t) of finding the qubit in state |↑〉, we
can obtain the measured probability for being into Fock state
|n〉 as Pn = |cn|2 [7,8]. The Wigner function rotates with the
changes of the relative phase of a two-state superposition of
Fock states as shown in Fig. 4. For superpositions of more than
two Fock states, the shapes of Wigner functions change.

FIG. 4. The Wigner tomography of the quantum phonon states
|0〉 + |2〉, |0〉 − i |2〉 and |0〉 + i |2〉. The change of the relative phase
of a two-state superposition of Fock states rotates the Wigner function
W (α).

To obtain all the quantum information of the quantum
phonon states of the CNT mechanical resonator, Wigner
tomography can be applied in the following steps. First,
one displaces the resonator by a driving microwave which
can be varied in frequency, amplitude, and phase. Then, the
phonon number distribution ρnn can be measured with a charge
detector or by coupling to a qubit for a variable time. This
corresponds to one point in the Wigner tomography. One then
varies the amplitude and the phase of the driving microwave
and repeats the measurement to obtain the full Wigner
tomography. We can simulate a full set of measurements with
probability Pn for having Fock state |n〉 via the density matrix
ρ from the set of the linear equations [8]

ρ ′
nn(α) = 〈n| D(−α)ρD(α) |n〉 =

∑
j,i

Mnjiρji, (15)

where the matrix M has the form

Mnji = 〈j | D(α) |n〉∗ 〈i| D(α) |n〉. (16)

The displacement operator can be expanded using the basis of
Fock states as

〈u| D(α) |v〉 = e−|α|2/2
√

u!v!
min{u,v}∑

k=0

αu−k(−α∗)(v−k)

k!(u − k)!(v − k)!
.

(17)

Therefore we can obtain the Wigner function from the density
matrix ρ, which is used in the following simulation.

VI. NONUNITRARY EVOLUTION

We use a master equation for the nonunitary evolution
taking the damping of the CNT and the thermal bath into
account. The spontaneous qubit relaxation rate is neglected
due to the small density of other phonon modes which have
similar frequencies in the CNT and in the surroundings such
as the substrate and the supports. The master equation for the
density matrix ρ is of the form

ρ̇ = − i

�
[H,ρ] + (nB + 1)�

(
aρa† − 1

2
{a†a,ρ}

)

+ nB�

(
a†ρa − 1

2
{aa†,ρ}

)
, (18)

where nB = 1/(e�ωp/kBT − 1) is the Bose-Einstein occupation
factor and � � g is the damping rate of the CNT. CNTs
with high factor Q = ωq/� ≈ 150 000 have been found in
laboratories [51,52]. The Q factor of a suspended CNT
would be reduced in the presence of a magnetic field and
be adjusted by the back gate to some extent [53,54]. We
take the following parameters: � = 104 ∼ 105 s−1, Q =
950 000 ∼ 95 000, and ωp/2π = 1.5 GHz. The phonons
follow the Bose-Einstein statistics in the thermal equilib-
rium, ρ = 1

Z

∑∞
n=0 e−n�ωp/kBT |n〉 〈n| ⊗ |ψ〉 〈ψ | where Z =∑∞

n=0 e−n�ωp/kBT is the partition function. We obtain the total
phonon state by the partial trace over the spins ρph = Trsρ.
We have simulated a procedure to produce the state |ψ〉 =
|↓〉 (|0〉 + i |2〉) at finite temperature T = 10 mK. Figure 5
shows how the fidelity F = √〈ψ | ρ |ψ〉 decreases with the
damping rate at finite temperature. The fidelity for the
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FIG. 5. The fidelity F of obtaining |ψ〉 = |0〉 + i |2〉 at tem-
perature T = 10 mK as a function of the damping rate �. The
fidelity F = √〈ψ | ρ |ψ〉 shows how close the obtained state ρ is
to the target state |ψ〉. The Wigner tomography of the obtained
states at T = 10 mK with (a) damping � = 0, (b) � = 104 s−1,
and (c) � = 3 × 104 s−1. The fidelity for the state obtained at (a) is
F = 0.999, for (b) is F = 0.945, and for (c) is F = 0.859. The other
parameters are λ/2π = 0.8 MHz, � = 100 MHz, ωp/2π = 1.5 GHz,
and g/2π = 0.56 MHz.

state obtained at � = 0 is F1 = 0.999, and F2 = 0.945 with
the damping rate � = 104 s−4, and the fidelity is found to be
F3 = 0.859 with the damping rate � = 3 × 104 s−1.

VII. CONCLUSION

In conclusion, single Fock states and arbitrary superpo-
sitions of the Fock states can be obtained by sequences
of qubit-phonon swaps, qubit flips, and phase operations.
The exchange of the spin and the phonon is obtained by
the spin-phonon interaction, which is based on the coupling
of the phonon and the spin due to the intrinsic spin-orbit
interaction. To obtain a large spin-phonon coupling strength
it requires the resonance of the spin and the phonon. The
mechanically induced ESR, which is obtained by applying an
external ac electric field, is used to flip the qubit in the presence
of a large detuning of the qubit and the phonon. The frequency
of the qubit can be adjusted by electrostatically moving the
electron wave function in the CNT in the slanting magnetic
field of a nearby micromagnet. A phase operation is applied to
change the relative phase of the state to cancel unwanted Fock
states in the next qubit-phonon swap or the next qubit flip.
Wigner tomography can be used to obtain the phase and the
amplitude information of the states. Nonunitary evolution of
the system is simulated with the master equation. Our proposal
introduces a way of electrically creating arbitrary quantum
phonon states by interacting the CNT resonator with the
electron spin in CNT. The formation of maximally entangled
quantum phonon states between two modes of a mechanical
resonator can be further studied by transferring the information
from two coupled electron spins in two quantum dots to the
resonator or coupling one spin to two different modes.
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