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All-microwave holonomic control of an electron-nuclear two-qubit register in diamond
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We present a theoretical scheme that allows one to perform a universal set of holonomic gates on a two-qubit
register, formed by a 13C nuclear spin coupled to the electron spin of a nitrogen-vacancy center in diamond.
Strong hyperfine interaction between the electron spin and the spins of the first three shells of 13C atoms allows
one to operate the state of the register on the submicrosecond timescale using microwave pulses only. We describe
the system and the operating regime analytically and numerically, as well as simulate the initialization protocols.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV−) center
in diamond is a point defect that has attracted significant
attention in recent years. Its bright optical transition with
the zero-phonon line of 1.945 eV [1,2] and the existence
of an intersystem crossing provide a good mechanism for
initialization and readout of a defect’s spin state [3]. The
ground state of the NV− center is a spin triplet and is sensitive
to magnetic and electric fields, as well as to strain [4–6],
which makes the defect useful for metrological applications
[7–9]. The long lifetime of the ground state coherence [10]
together with the fast optical initialization and readout renders
the NV center interesting for quantum information purposes
[11,12]. Recently, fault-tolerant universal geometric single-
qubit gates [13] have been achieved using both optical [14,15]
and microwave [16,17] control of the spin. Scaling up to
many NV spins is still an issue, as it is challenging to
couple the defect spins [18–20]. On the other hand, numerous
experiments have been performed on multiqubit registers that
include the NV center electron spin coupled to the nearby
13C nuclear spins through the hyperfine interaction [21–26].
Such a configuration allows the use of the longer coherence
time of the nuclear spin to preserve the quantum state during
times exceeding the T ∗

2 of the electron spin. This can then
be used for distributed quantum computation with electron-
nuclear quantum registers [27] or to gain increased sensitivity
in metrological applications of NV centers [28]. From this
perspective the feasibility of universal control of the state of
such registers becomes important. The existing experiments
described in the literature [29] allow fast microwave control
of the electron spin, as well as fast entangling CNOT or CPHASE

gates controlled with the state of the nuclear spin. At the same
time performing single-qubit gates on the nuclear spins that
are relatively close to the electron spin still required radio
frequency pulses that weakly couple to the nuclear spins due
to their low gyromagnetic ratio [30].

Our work is motivated by the fact that the hyperfine in-
teraction between the nearest-neighbor 13C nuclear spin and
an NV center provides a nuclear spin splitting on the order
of 130 MHz [31,32], which allows for universal holonomic
[13] single- and two-qubit gates on the two-qubit register,

assisted by hyperfine interaction. The key enabling idea is
to use a magnetic field to mix the electronic states |−1〉 and
|0〉. In this case the quantization axis for the nuclear spin will
depend on the state of the electron spin. We show that this
implies that electronic transitions between different hyperfine
levels are no longer forbidden by nuclear spin selection rules
and can efficiently be driven by microwaves. This should
result in a speedup compared to the existing schemes and
provide universal control of the register, requiring application
of microwave-only pulses and making use of the relatively
stronger electron magnetic dipolar transitions.

This paper is structured as follows. In Sec. II we consider
our scheme in the leading order of perturbation theory, pro-
viding a more detailed treatment in Appendix A. In Sec. III
we discuss how one could initialize and read out the state
of the two-qubit register. Section IV is concerned with the
construction of the pulses for universal quantum computing
on the two-qubit system.

II. SYSTEM AND OPERATING REGIME

The Hamiltonian describing the ground state of the NV
interacting with the nuclear spin of a nearby 13C is

Ĥgs = Ĥe + Ĥn + Ĥh f ,

Ĥe = DgsŜ
2
z + γeB · Ŝ,

(1)
Ĥn = γnB · Î,

Ĥh f =
∑

i, j={x,y,z}
Ai j Ŝi Î j .

Here Dgs = 2.88 GHz is the ground-state zero-field splitting,
γe = gμB = 2.8 MHz/G is the electronic gyromagnetic ratio,
and γn = 0.001 MHz/G is the nuclear gyromagnetic ratio.
The values for the hyperfine tensor Ai j are taken from [31].
This tensor is approximately diagonal in the basis, where the
z axis coincides with the direction connecting the vacancy
to the 13C atom. The eigenvalue corresponding to this axis
amounts to 201 MHz for a 13C atom in the first coordination
shell, while the other two eigenvalues are 120 MHz. In our
simulations we do a basis change to obtain the values of the
tensor in the NV-axial basis. In what follows we neglect the
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splittings arising due to the Zeeman Hamiltonian Ĥn, as they
are much smaller than those arising from hyperfine interaction
for the 13C atom in the first coordination shell of an NV center.

Let us first treat the electronic part of the Hamiltonian
(1); later we will add the hyperfine interaction as a pertur-
bation. We first assume magnetic field Bz = Dgs/γe in the
direction of the NV symmetry axis, so that the levels |−1〉
and |0〉 are degenerate. Now we also assume a magnetic
field B⊥ in the direction perpendicular to the symmetry
axis, and write the magnetic field as Bx − iBy = B⊥eiφ . The
coupling of |1〉 to |0〉 is suppressed due to a large energy
gap 2Dgs between them; therefore, in this section we neglect
this coupling. Thus the eigenvectors of the Hamiltonian will
be |+〉 = (eiφ/2 |0〉 + e−iφ/2 |−1〉)/

√
2 and |−〉 = (eiφ/2 |0〉 −

e−iφ/2 |−1〉)/
√

2 with the energies ±|�|, respectively, with
|�| = γeB⊥/

√
2. Now we add the hyperfine interaction Ĥh f

to the system. Assuming ||A|| � |�|, we can restrict our
analysis to the secular terms of the hyperfine interaction,
which do not flip the electron spin. Then for each electronic
level we can describe the hyperfine interaction in terms of the
Knight field h j , acting on the nuclear spin I j ,

ˆ̃Hh f =
∑

e={+,−,1}

∑
j={x,y,z}

|e〉 〈e| he
j Î j,

(2)
he

j =
∑

i={x,y,z}
Ai j 〈e|Ŝi|e〉 .

One of the key ingredients of the current proposal is the fact
that the Knight field turns out to point in different directions
for each of the three electronic levels, resulting in the level
structure of the defect’s ground state shown in Fig. 1. We can
thus conclude that transitions between all eigenlevels of the
system are now allowed by the nuclear spin selection rules
and can be driven with a microwave field, oriented in the
direction perpendicular to the symmetry axis of the defect.
Let us number the levels in the figure from bottom to the
top with 1, . . . , 6. For a given direction of the microwave
field, resonant with the transition from level i to level j, the
Hamiltonian of the microwave field takes the form

Ĥmw = gi j (si je
iwi j t |i〉 〈 j| + H.c.). (3)

Here ωi j = Ei − Ej is the energy splitting between levels i
and j, si j is the matrix element, describing the strength of the
corresponding microwave transition, and gi j is the amplitude
of the microwave pulse, proportional to the magnetic field
amplitude. In the simple picture described above that neglects
all nonsecular terms, one calculates wi j as the difference
between eigenvalues of the Hamiltonian (1), which includes
only the secular terms

Ĥ =
⎛
⎝−|�| +

∑
j={x,y,z}

h−
j Î j

⎞
⎠ |−〉 〈−|

+
⎛
⎝|�| +

∑
j={x,y,z}

h+
j Î j

⎞
⎠ |+〉 〈+|

Energy

FIG. 1. Energy level structure of the ground state of the NV−

center in diamond coupled to a nearby 13C nuclear spin when a
nonparallel magnetic field mixes the electronic levels |0〉 and |−1〉.
The states |+〉, |−〉, and |1〉 to the left of the dashed line are the eigen-
states of the electron spin without hyperfine interaction (hyperfine
tensor A = 0), the direction of the black arrows to the right of the
dashed line indicates the quantization axis of the nuclear spin, and
|ψ e

p,m〉 (e ∈ {+,−, 1}) mark the corresponding hyperfine eigenstates.
Dgs is the NV− ground-state zero-field splitting, while |�| marks the
splitting that arises between |+〉 and |−〉 when nonparallel magnetic
field mixes |0〉 and |−1〉.

+
⎛
⎝2Dgs +

∑
j={x,y,z}

h1
j Î j

⎞
⎠ |1〉 〈1| . (4)

To parametrize he
j , e ∈ {+,−, 1}, we introduce θ±, φ±, θ1, φ1

according to

he = (
he

x, he
y, he

z

)
= |he|(sin θ e cos φe, sin θ e sin φe, cos θ e), (5)

for e ∈ {+,−, 1}.
The eigenstates of the system in Fig. 1 will take the form

ψe
p = |e〉

(
cos

(
θ e

2

)
sin

(
θ e

2

)
eiφe

)
,

ψe
m = |e〉

(
sin

(
θ e

2

)
− cos

(
θ e

2

)
eiφe

)
,

(6)

with the eigenvalues being E1,2 = −|�| ± |h−|/2, E3,4 =
|�| ± |h+|/2, E5,6 = 2Dgs ± |h1|/2. The state with index p
corresponds to the upper state of the hyperfine doublet; the
state with index m, to the lower one. If the system is driven
with a microwave field pointing in the y direction, si j from
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FIG. 2. Eight different pulse protocols to couple any basis state
of a two-qubit register to the upper electronic state of the NV center.

Eq. (3) can be explicitly calculated using the states (6). For
example s26 will take the form

s26 = 〈ψ−
p |Sy

∣∣ψ1
p

〉
= 〈−|Sy|1〉

[
cos

(
θ−

2

)
cos

(
θ1

2

)

+ ei(φ1−φ− ) sin

(
θ−

2

)
sin

(
θ1

2

)]
. (7)

The last factor here comes from the scalar product of two
nuclear spin wave functions and its absolute value is cos(α) =√

1/2 + (h− · h1)/(2|h−||h1|).
To gain universal control over the system we propose

using eight microwave pulses that couple the levels 1,2,3,4
to the levels 5,6 (Fig. 1). The control Hamiltonian will then
contain eight copies of (3) with i ∈ {5, 6}, j ∈ {1, 2, 3, 4}. If
we change into a rotating frame, in which all six levels have
the same energy, the control Hamiltonian will take the form

Ĥmw =
∑

i∈{5,6}, j∈{1,2,3,4}
gi jsi j |i〉 〈 j| + H.c. (8)

Adjusting the two amplitudes g61, g62, we can couple any
superposition of levels |1〉, |2〉 to the state |6〉. Let us now
choose any pair of orthogonal nuclear spin states |0n〉, |1n〉;
then

|−, 0n〉 = α |1〉 + β |2〉 ,

|−, 1n〉 = −β∗ |1〉 + α∗ |2〉 .
(9)

If we now apply the two pulses simultaneously, one cou-
pling the level 1 to the level 6 and one coupling the level
2 to 6, such that g61 = gα∗/s61, g62 = gβ∗/s62, the control
Hamiltonian will take the form Ĥmw = g |6〉 〈−, 0n| + H.c.
Analogously, if we define g61 = −gβ/s61, g62 = gα/s62, we
will obtain the control Hamiltonian Ĥmw = g |6〉 〈−, 1n| +
H.c. These pairs of pulses are the new control pulse protocols
that can couple |−, 0n〉 and |−, 1n〉 to the level |6〉. Similarly,
we can define in total eight new control pulse protocols that
will couple the levels |−, 0n〉, |−, 1n〉, |+, 0n〉, |+, 1n〉 to
the levels |5〉 and |6〉. We name these new pulse protocols
p1, p2, . . . , p8 and show them in Fig. 2.

Each of these pulses has a magnitude |pi| and a phase
fi. In the rotating frame all states have the same energy, but
in a real system the possibility to apply each of the given
pulse protocols separately is based on the fact that the energy
differences between levels 1,2,3,4 and the levels 5,6 in Fig. 1
have eight different values and the corresponding transitions
can be resolved. In Fig. 1 the transitions from level 1 to
level 5 and from level 2 to level 6 are closest to each other.
Choosing the parameters as discussed in Appendix B, we
numerically diagonalize the Hamiltonian (1) and find that the
closest resonance frequencies differ by 36 MHz. The inverse

excited state manifold

singlet

energy

optical

mw

FIG. 3. State initialization protocols. Optical pulses (red) pump
the electronic states |1〉 and |+〉 to the NV excited state manifold.
An additional simultaneous microwave tone (blue arrow) pumps
one of the two lowest hyperfine sublevels. Green arrows illustrate
incoherent mechanisms that return the population to the ground state.
After many excitation cycles the system becomes trapped in the
lower hyperfine level (black dot).

of this value is 28 ns and it sets the limit to how fast we can
operate our system. If we apply one frequency tone close to a
given resonance, we want its effect on other transitions to be
negligible. This is only possible if the coupling amplitude is
much smaller than 36 MHz, which means a gate operation
time should be much larger than 28 ns. If the gate time is
too low, nonresonant transitions will start to affect the gate
fidelity. Nevertheless, this still leaves enough room for a
submicrosecond control of the two-qubit register.

In this section we based our description on the simplified
Hamiltonian (4), which neglects the nonsecular interaction of
the electron spin with nonparallel magnetic field and non-
secular hyperfine interaction terms. The same arguments can
be given if one uses a more rigorous effective Hamiltonian
(A10), which we derive in Appendix A. This Hamiltonian
takes into account the nonsecular interaction terms and is valid
to second-order perturbation theory.

III. INITIALIZATION AND READOUT

In this section we show how to perform initialization
and readout of the system in the regime suggested in the
previous section, when Bz = Dgs/γe and |�| 	 ||A||. Our
proposal to perform initialization and readout of the system
is based on coherent population trapping [33] and resembles
the scheme used in Ref. [34]. Figure 3 shows the procedure.
Here the excited state manifold consists of an orbital dou-
blet, a spin triplet, and a hyperfine doublet, thus forming a
12-dimensional space. The exact Hamiltonian governing the
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energy

FIG. 4. Energy levels in 
 configuration. Two different laser
fields with interaction matrix elements u0 and u1 (controlled by the
laser amplitudes and phases) and a common detuning � couple the
ground states |0〉 and |1〉 to the same excited state |e〉. This generates
a nontrivial unitary operation on the lower levels, when the system is
driven to the |e〉 state and back.

dynamics of the excited state manifold is given in Appendix B.
The electronic levels |1〉, |+〉 are coupled to the excited state
manifold through optical excitation, shown as red arrows in
Fig. 3. The frequencies of the optical fields are such that
the level |−〉 is out of resonance, while the other two levels
|1〉, |+〉 are coupled close to resonance. In Appendix B
we show that one can achieve this with a single-frequency
optical field in the relevant magnetic field regime. In order
to initialize the system in the lowest level of Fig. 3, an
additional microwave pulse is required, shown as a blue arrow
in Fig. 3. Whenever the lowest level is not populated, it will be
brought to the excited state manifold through a combination of
microwave and optical pulses. From there, the population will
incoherently decay back to the ground state manifold through
the channels marked with green arrows in Fig. 3. Then the
process repeats itself until after many cycles of optical and
microwave excitation the population becomes trapped in the
lowest level of Fig. 3. We performed a numerical simulation
of this initialization procedure and showed that in 100 μs the
system can be initialized with a fidelity of 98%, in agreement
with the results obtained for a similar procedure in [34]. The
details of the simulation and the relevant parameters are given
in Appendix B.

Readout can be performed in a similar manner. Let us
assume that we want to know whether the system is in a state
ψ . We first perform a gate that takes ψ to the lowest level of
Fig. 3, followed by the initialization procedure. The absence
of luminescence intensity indicates the system was initially in
the state ψ ; the presence of luminescence intensity indicates
the opposite measurement result.

IV. UNIVERSAL SET OF HOLONOMIC GATES

Our proposal is to perform non-Abelian holonomic gates
[13] using the setup described in the previous sections. Each
such gate involves three levels, two ground states (|0〉 and
|1〉) that are treated as a logical basis (or part of the logical
basis) and one excited state |e〉, as shown in Fig. 4. The
lower states are coupled to the excited state with two different
coupling amplitudes u0 and u1, at frequencies that are both
detuned from resonance by the same value �, as shown in
Fig. 4. In this scheme we assume that the ground state levels
have the same energy, but this is not necessary if the rotating
wave approximation is valid, which holds for the transitions

between the NV center levels in the regime we consider here.
In that case one can always describe the system in the rotating
frame, where the ground states have the same energy. Going
to a rotating frame modifies the laser frequency, such that they
would have the same detuning with respect to the excited state.
This immediately suggests that the validity of our scheme re-
lies on how well one can control the frequency in experiment
and how good the phase and frequency locking between the
lasers can be made. Modern technology allows very precise
frequency standards and very good laser locking, which is
why we assume this is not an issue that can affect the fidelity
of our gates, and from now on we will assume the rotating
wave picture and precise coupling frequencies and phases.

In the rotating frame of the couplings, the 
-system Hamil-
tonian reads

Ĥ = (u0 |0〉 〈e| + u1 |1〉 〈e| + H.c.) + � |e〉 〈e| . (10)

We can introduce the bright (|b〉) and dark (|d〉) states
according to

|b〉 = u0

u
|0〉 + u1

u
|1〉 ,

|d〉 = u∗
1

u
|0〉 − u∗

0

u
|1〉 ,

(11)

where u =
√

|u0|2 + |u1|2. In this new basis the Hamiltonian
takes the following form:

Ĥ = u(|b〉 〈e| + |e〉 〈b|) + � |e〉 〈e| . (12)

Assuming u0 and u1 are time independent (the coupling pulses
are flat), this Hamiltonian generates the following evolution of
the state |b〉:

|b〉 → e−i�t/2

[
|b〉 cos(ωt ) − i

(
u

ω
|e〉 − �

2ω
|b〉

)
sin(ωt )

]
,

(13)

where we introduced ω =
√

u2 + �2/4. If the couplings are
only switched on for a time t = π/ω, the state |b〉 will evolve
into

|b〉 → eiγ |b〉 , γ = π − π�√
�2 + 4u2

. (14)

If we start with a superposition α |d〉 + β |b〉, this transforma-
tion generates the following gate:

α |d〉 + β |b〉 → α |d〉 + eiγ β |b〉 , (15)

which is equivalent to a rotation by the angle γ about the
axis, connecting |b〉 and |d〉 on the Bloch sphere [Fig. 5(a)].
It is worth mentioning that the Hamiltonian (12) gives zero
expectation value of the energy for any state in the ground
state space. When the state (15) evolves in time, the energy
expectation value remains zero because the Hamiltonian is
time independent. The angle γ thus has purely geometric
nature and on a Bloch sphere spanned with |b〉 and |e〉 equals
half of the solid angle traced by the cyclic trajectory of |b〉
[Fig. 5(b)]. Since the bright state and the angle γ can be
chosen arbitrarily, any unitary can be generated in the space
of |0〉 and |1〉. Indeed, the axis of rotation on the Bloch sphere
can be controlled by the relative strength and phase of the
couplings u0 and u1, while the angle of rotation is controlled
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(a) (b)

FIG. 5. Geometric phase. (a) A rotation by γ on the Bloch
sphere, spanned by |0〉 and |1〉, corresponding to the transformation
α |d〉 + β |b〉 → α |d〉 + eiγ β |b〉. (b) The angle γ has a purely geo-
metric origin and equals half of the solid angle traced by the cyclic
trajectory of |b〉 on the Bloch sphere spanned by |b〉 and |e〉.

with the detuning � and can be tuned to take any value from
zero to 2π . What needs to be treated with care is the timing,
meaning that the couplings u0 and u1 must be switched on
exactly for the time π/ω.

We now show how to construct a universal set of gates
to control the two-qubit register in the magnetic field regime
given in Sec. II, when Bz = Dgs/γe and |�| 	 ||A||. Univer-
sal control requires that one can generate each of the eight
microwave tones p1, p2, . . . , p8, without driving any other
transitions. Figure 2 suggests different ways to identify a 


system, discussed before. Using the pulses p1 and p3 we can
create a 
 system that allows one to perform universal gates
on the nuclear spin controlled by the state of an electron
spin. More precisely, the nuclear spin state is flipped only if
the electron spin is in the state |+〉. Analogously, using the
pulses p5 and p7 one arrives at gates on the nuclear spin,
controlled with the |−〉 state of the electron spin. Performing
the same gate first using the pulses p1 and p3 and then the
pulses p5 and p7, one performs universal single-qubit gates
on the nuclear spin. In exactly the same way, gates on the
electron spin controlled with the state of a nuclear spin can be
performed combining pulses p1 with p5 and p3 with p7. Thus,
universal holonomic computation with the two-qubit register
can be achieved.

For example, the CPHASE gate can be performed if the
control pulse protocol p8 is switched on with zero detuning
for the time τ = π/|p8|. That is equivalent to switching two
laser pulses that resonantly couple the levels 1 and 2 to the
level 6 (Fig. 1). The amplitudes and phases of the lasers are
adjusted such that the microwave Hamiltonian takes the form

Ĥmw = |6〉 (g61s61 〈1| + g62s62 〈2|) + H.c.

= p8 |6〉 〈−, 1n| + H.c. (16)

In addition to being able to generate a universal set of
gates, one must also make sure that the generated gates are of
sufficiently high fidelity to be useful for quantum information
applications. There are two qualitatively different sources
of gate errors in our scheme. The first one is Markovian
noise, related to T1 and T2 times of the NV center and the
nuclear spin. In principle, we could include this noise in
our consideration in a way similar to the way we treated
spontaneous emission to simulate the initialization process, by

means of a Lindblad equation. On the other hand, considering
that our gates are rather fast (we assume each of the two
couplings in a 
 system to be 2.5 MHz, which yields the
gate operation time of approximately 285 ns), and that the
T1 and T2 times can be made hundreds of microseconds for
NV centers, we will not consider these processes as the main
source of errors and neglect them in our consideration of the
gate robustness. The second source of errors comes from the
non-Markovian environment of the NV center. For example,
the 13C nuclear spins create a random magnetic field which
remains constant during the gate operation, i.e., field noise
having a correlation time much larger than the gate time. The
most relevant effect of this random magnetic field is that the
energies of the electronic levels in Fig. 1 become ill defined,
as the field interacts with the electronic spin. During the gate
operation this leads to fluctuations of the detuning � as well as
to the emergence of some random energy difference between
|0〉 and |1〉 in Fig. 4 or between |+〉 and |−〉 in Fig. 1. In
principle, these two effects are present at the same time, but
for simplicity, we will consider them separately. This will also
allow us to see which of the two effects is more important.
In Ref. [35] it was shown that the detuning � between the
electronic levels |0〉 and |1〉 has a Gaussian distribution with
σ = 0.131 MHz. In our scheme we can then assume this value
to be 1.5 times bigger, as the levels |±〉 have a contribution of
the |−1〉 electronic level, which causes them to go in the other
direction in energy by half the value with respect to the level
|1〉. The energy fluctuation between |+〉 and |−〉 is caused
by the random magnetic field, perpendicular to the symmetry
axis of the NV. We assume this value to be

√
2σ , as according

to the definition of |�| above 2δ|�| = √
2γeδB⊥, and so the

standard deviation of this value is
√

2 times bigger than that
of γeBz, if we assume all directions of the random field to be
equivalent. Another effect reducing the gate fidelity consists
in the fluctuations of microwave coupling amplitudes used
to drive the quantum gates. Although we need two different
frequency tones to drive our gates, we assume that they arise
from the same pulse generator, and so the fluctuations in
driving strengths are correlated. In Ref. [35] it was shown
that these fluctuations obey a Lorentzian distribution with γ =
0.0024 MHz, which we will also assume for our simulations.

We describe the effect of these imperfections on the gate
performance in the following way. Let us assume we are
interested in the effect of the detuning fluctuations (δ�). First
we assume that fluctuations are absent and define the pulse
sequence that will yield the targeted gate U . We then apply
this pulse sequence to the initial state of the system (ρin)
many times, assuming different values of the detuning �, and
obtaining the final density matrix ρf(�) as a function of �. We
now average this density matrix over � with the distribution
function f (�), which yields the action of a quantum channel
on our initial state ρin:

ρin → E (ρin) =
∫

ρf(�) f (�)d�. (17)

With this procedure in mind, we are able to compute the
average gate fidelity according to

F =
∫

dψ 〈ψ |U †E (|ψ〉 〈ψ |)U |ψ〉 . (18)
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As was shown by Horodecki [36], this fidelity can be related
to the so called entanglement gate fidelity

Fe = 〈φ|U †1 ⊗ E (|φ〉 〈φ|)U |φ〉 , (19)

where |φ〉 is some maximally entangled state of the system
and ancilla, which has the same dimension as the system. In
our case the system of interest is four-dimensional (d = 4),
as we are manipulating the state of two qubits. Thus we
need to add a four-dimensional ancilla. However, we use two
additional levels to perform holonomic gates and thus there
might be leakage errors, when the system can be found outside
of the logical space with nonzero probability. In this context
we note that the relation between average gate fidelity and en-
tanglement fidelity was initially derived for trace-preserving
gate operations, i.e., in the absence of leakage errors. For our
purpose, the corresponding relation thus needs to be modified
and takes the form (see Appendix C)

F = dFe + Tr[E (1/d )]

d + 1
, (20)

where d is the dimension of the Hilbert space of the system
and 1/d denotes the totally mixed state of the system. Thus,
we numerically apply targeted gates through the correspond-
ing maps E on two states, once on the maximally entangled
state of the system and ancilla to compute the entanglement
fidelity and once on the maximally mixed state of the system
to compute Tr[E (1/d )]. In the absence of leakage errors the
latter expression is equal to 1 and we recover the standard
result from Horodecki and Nielsen [36,37].

In Ref. [35] optimal control theory was used to construct
special gate pulses to reduce the effect of fluctuations of
detuning and coupling amplitudes such that the error contri-
butions quadratic in σ and γ could be eliminated. In contrast,
as was shown in Refs. [38,39], the error of the nonadiabatic
holonomic gate is quadratic in detuning and pulse amplitude
fluctuation strengths. But this does not necessarily mean that
these gates have low fidelity. One has to take into account
that the effect of errors for nonadiabatic holonomic gates
is qualitatively different from that of their dynamical coun-
terparts [40]. Indeed, the detuning error (δ�) and the pulse
strength error (δu) on the one hand modify the expression
for ω in Eq. (13), thus preventing the cyclic evolution of
the state |b〉. On the other hand, these errors affect the area
traced by the trajectory of |b〉 in Fig. 5(b), thus modifying
the phase γ in Eq. (14). The energy fluctuation between |+〉
and |−〉 is yet another type of error that dephases these two
levels during the operation of the gate. We consider the effect
of these errors on two different gates, CNOT on the electron
spin, controlled by the nuclear spin, and CNOT on the nuclear
spin, controlled by the electron spin. Ideally, without errors,
the average gate fidelity is equal to unity. We controlled
the precision of our simulation such that the gate fidelity is
accurate up to errors on the order of 10−4. We choose the gate
time in our simulation to be approximately 285 ns, obtaining
a gate fidelity of 0.998 limited by undesired nonresonant
transitions caused by each of the laser drives. We find that
in the presence of realistic detuning errors δ�, the average
gate fidelity for both gates drops to 0.995. For the error in
the coupling strength (δu), we did not observe any noticeable
fidelity decrease within the calculation precision. The random

energy fluctuation between |+〉 and |−〉 leads to memory
errors that degrade the quantum state even when no gates are
performed. Still, for the CNOT gate, performed on the electron
spin, this error has an additional relevance as |0〉 and |1〉 in
Fig. 4 are subject to energy fluctuation with respect to each
other and the level |e〉. On the contrary, for the CNOT on the
nuclear spin, |0〉 and |1〉 would belong to the same electronic
level and would thus fluctuate in the same direction, which is
equivalent to δ� error, considered before. We thus consider
the effect of random energy fluctuation between |+〉 and |−〉
only on the CNOT gate, performed on the electron spin. We
find that the fidelity drops to 0.985. This includes the effect
of random energy fluctuation between |+〉 and |−〉 during the
gate operation time. The infidelity due to this type of noise is
found to be 0.013 including the effect of always-on memory
errors. We estimate the overall gate infidelity to be 0.016, if
we assume the infidelity to be additive in this limit, and using
an infidelity of 0.003 originating from δ� fluctuations. This
simplistic estimate provides us with a lower bound on the gate
fidelity in our scheme of around 0.982 whereas the theoretical
gate fidelity of the CNOT gate for the pulses generated with
optimal control techniques was calculated to be 0.9927 [35].
Of course the direct comparison is hard to make, as the
setups for the two schemes are very different. For example, in
our simulation we assume the gate time to be approximately
285 ns, compared to 696 ns [35]. Changing the gate time in
our scheme leaves some more room for increasing the gate
fidelity, but already at this stage our simulations indicate that
nonadiabatic holonomic gates in our scheme can be quite
robust against certain types of errors, even using simple square
pulses, rather than the pulses generated with optimal control
theory.

V. DISCUSSION

In this work we have shown how to perform universal
quantum computing on a two-qubit register, consisting of
the electron spin of a negatively charged nitrogen-vacancy
center in diamond and the nuclear spin of a nearby 13C atom.
Although we only considered the carbon atom of the shell
closest to the vacancy due to the strong hyperfine interaction,
our method can be extended to control the carbon atoms
further away. We estimate that the magnitude of the dipole-
dipole hyperfine interaction for 13C atoms that are twice as
far from the vacancy as the closest carbon is such that the
transitions |1〉 to |5〉 and |2〉 to |6〉 can still differ by 1 MHz
and thus the register can be manipulated using microwave
transitions only. The density functional theory calculations
[41] that also take into account the Fermi contact term reveal
there are approximately 40 carbon atoms around the vacancy
with hyperfine constants greater that 2 MHz, which suggests
that there are more than 3 closest 13C atoms, to which our
method can be applied. It is still possible to perform universal
gates on these atoms until the electron spin decoheres, but in
that case one also has to include the nitrogen nuclear spin into
consideration. Our method can readily be extended to include
the nitrogen nuclear spin through the hyperfine interaction
Hamiltonian

ĤN = A||Ŝz Îz + A⊥(Ŝx Îx + ŜyÎy), (21)
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with the hyperfine constants being A|| = −2.16 MHz, A⊥ =
−2.6 MHz [42]. Using this Hamiltonian, the Knight field
acting on the nitrogen nuclear spin can be calculated in the
same way as was done for the closest shell carbon atom.
Other proposals exist to perform universal microwave con-
trol on the registers of coupled nuclear and electron spins
[43,44]. They differ from our method in the sense that their
gates are not geometric and universality in those schemes
requires an external magnetic field acting on the nuclear spins
to add up with the hyperfine Knight field and thus create
two nonparallel axes of rotation, while in our scheme we
only rely on the hyperfine field, which is stronger than the
external magnetic field. Strong hyperfine interaction has its
disadvantages in that it decoheres the nuclear spin very fast.
Going to a rotating frame picture reveals that the nuclear
spin is not affected by the dephasing in the ground state
space of the electron spin (T2), but the relaxation processes
(T1), as well as reinitialization of the electron spin, affect the
nuclear spin dramatically [22]. Still our scheme can be used to
perform universal quantum computation, for example, to gain
increased sensitivity of an NV-based quantum sensor [28].
We also note that although we only considered our scheme
applied to the nuclear spin strongly coupled to the electronic
spin, it would also be possible to consider it with respect to
weakly coupled nuclear spins. A great deal of research has
been done on the control of these registers [45–48], and the
configuration in which the levels |0〉 and |−1〉 are mixed due
to nonparallel magnetic field could offer new pathways to
control such registers.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR
HYPERFINE INTERACTION IN EACH ELECTRONIC

LEVEL, VALID TO SECOND-ORDER
PERTURBATION THEORY

In this Appendix we treat the coupled nuclear and electron
spin system in the presence of nonparallel magnetic field in
a rigorous way. We fix Bz = Dgs/γe and introduce the phase
factor φ according to the equation Bx − iBy = B⊥eiφ . At this
field and in this notation one obtains

Ĥe = DgsŜ
2
z + γe(BxŜx + ByŜy + BzŜz )

= 2Dgs |1〉 〈1| + γe

2
B⊥(eiφS+ + e−iφS−). (A1)

We further introduce � = e3iφ/2

2 γeB⊥ and the new basis states

|+〉 = 1√
2

(eiφ/2 |0〉 + e−iφ/2 |−1〉),

|−〉 = 1√
2

(eiφ/2 |0〉 − e−iφ/2 |−1〉),

(A2)

so the Hamiltonian He takes the form

Ĥe = Ĥ0 + Ĥ2
e ,

Ĥ0 = 2Dgs |1〉 〈1| + |�|(|+〉 〈+| − |−〉 〈−|),
Ĥ2

e = �(|1〉 〈+| + |1〉 〈−|) + �∗(|+〉 〈1| + |−〉 〈1|).
(A3)

We now introduce the hyperfine and the nuclear spin Zeeman
interactions Ĥh f , Ĥn into the system. We split the hyperfine
interaction into secular and nonsecular terms as

Ĥh f = Ĥ1
h f + Ĥ2

h f ,

Ĥ1
h f =

∑
k={1,+,−}

|k〉 〈k|
∑

i, j={x,y,z}
Ai j Î j 〈k|Ŝi|k〉 , (A4)

Ĥ2
h f =

∑
k̃ �=k

|k〉 〈k̃|
∑

i, j={x,y,z}
Ai j Î j 〈k|Ŝi|k̃〉 .

Our aim now is to obtain an effective Hamiltonian in each
of the three electronic subspaces. We achieve this using the
formalism of the Schrieffer-Wolf transformation [49,50]. The
basic idea is to find a basis change that brings to zero non-
secular terms Ĥe, Ĥ2

h f up to a certain order of magnitude. In
order for this procedure to work we have to assume that |�| �
2Dgs, ||Ai j || � 2�. Following this procedure, we introduce an
anti-Hermitian matrix S, which obeys the equation

SH0
e − H0

e S = −Ĥ2
h f − Ĥ2

e . (A5)

After performing this procedure, we obtain

S = �

2Dgs − |�| |1〉 〈+| + H.c.

+ �

2Dgs + |�| |1〉 〈−| + H.c.

−
∑
k �=k̃

∑
i j Ai j Î j 〈k|Si|k̃〉

Wk̃ − Wk
, (A6)

where W1, W+, and W− are 2Dgs, |�|, and −|�|, respectively.
Now we can calculate the effective Hamiltonian in each of the
three electronic subspaces

Ĥeff = Ĥ0
e + Ĥn + Ĥ1

h f + 1
2

[
S, Ĥ2

h f + Ĥ2
e

]
. (A7)

From this expression it follows that the interaction of the
electron spin with the transverse magnetic field leads to the
renormalization of the energies of the bare electronic states
Dgs, |�|, −|�| to the new values

D̃gs = Dgs

(
1 + 2|�|2

4D2
gs − |�|2

)
,

�± = |�|
(

1 ∓ |�|
2Dgs ∓ |�|

)
.

(A8)

Let us also introduce the corrections to hyperfine terms due to
the interaction of electron spin with the transverse magnetic
field

C± = 2Re[� 〈±|Si|1〉]
2Dgs ∓ |�| . (A9)
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For the effective Hamiltonian we then obtain

Ĥeff = 2D̃gs |1〉 〈1| + �+ |+〉 〈+| − �− |−〉 〈−|
+

∑
i j

Ai j Î j (〈1|Si|1〉 + C+ + C−) |1〉 〈1|

+
∑

i j

Ai j Î j (〈+|Si|+〉 − C+) |+〉 〈+|

+
∑

i j

Ai j Î j (〈−|Si|−〉 − C−) |−〉 〈−|

+ 1

2

∑
i j

Ai jAĩ j̃

2|�| 〈+|Si|−〉 〈−|Sĩ|+〉 Î j Î j̃ |+〉 〈+|

− 1

2

∑
i j

Ai jAĩ j̃

2|�| 〈−|Si|+〉 〈+|Sĩ|−〉 Î j Î j̃ |−〉 〈−|

+Ĥn. (A10)

The first line here arises due to the interaction of the electron
spin with magnetic field. Lines two to four describe the secular
terms of the hyperfine interaction corrected due to nonsecular
terms of the electron spin interaction with the magnetic field.
Lines five and six take into account the nonsecular part of
the hyperfine interaction, which mixes the electron spin states
|+〉, |−〉. We neglect the effect of this interaction that mixes
|+〉, |−〉 with |1〉, because it is small compared to all other
effects.

APPENDIX B: DETAILS OF THE
DYNAMICS SIMULATION

In this Appendix we give details of the simulation we
performed to model the initialization fidelity. The ground state
of the NV is an orbital singlet, spin triplet, and we describe
it with the Hamiltonian (1). The excited state is treated as
an orbital doublet, spin triplet, and we describe it with the
following Hamiltonian [2]:

Ĥes = g||
esμBBzŜz + 2μB(BxŜx + ByŜy) − λσyŜz + lμBBzσy

+ Dzz
(
Ŝ2

z − 1
3 S(S + 1)

)
+ Dxy

(
σz

(
Ŝ2

y − Ŝ2
x

) − σx{Ŝx, Ŝy}
)

+ Dxz(σz{Ŝx, Ŝz} − σx{Ŝy, Ŝz})

+
∑

i, j={x,y,z}
Aes

i j Ŝi Î j + γnB · Î. (B1)

Here σx, σy, σz are Pauli matrices that act in the basis of
|Ex〉, |Ey〉 of the orbital doublet. The first line describes the
Zeeman interaction, the second line takes into account spin-
orbit coupling and the interaction of magnetic field with the
orbital angular momentum L̂ (described with an operator σy

in the relevant subspace). Lines three, four, and five describe
the spin-spin interaction. The sixth line takes into account
the hyperfine interaction in the excited state. The seventh line
gives the Zeeman interaction for the nuclear spin. The strength
of the corresponding interactions is taken from Ref. [51] and
is listed in Table I. The strength of the hyperfine interaction
is given in the basis when the z axis coincides with the
direction from the vacancy to the 13C atom. In this basis

TABLE I. The values used to simulate the initialization fidelity.

Parameter Value

g factor g||
es 2.15

Spin-orbit constant λ 5.33 GHz
l 0.1
Axial spin-spin constant Dzz 1.44 GHz
Transverse spin-spin constant Dxy 1.54/2 GHz
Transverse spin-spin constant Dxz 154/

√
2 MHz

Aes
|| 126 MHz

Aes
⊥ 56.7 MHz

γn 0.001 MHz/G
�ge 83.3 MHz
�se 400 MHz
�0s 1.5 MHz
�pms 0.58 MHz
�o 25 MHz
�mw 10 MHz

the hyperfine tensor is diagonal, with the biggest eigenvalue
(Aes

|| ) corresponding to the vector along the z direction. The
excited orbital states can decay to the ground state through
a spin-conserving photon emission with the rate �ge each.
The corresponding decay operators are Ox = |A2〉 〈Ex| and
Oy = |A2〉 〈Ey|, where |A2〉 is the ground state orbital sin-
glet. The excited state |A1〉, which is the eigenstate of the
spin-orbit and spin-spin part of the Hamiltonian (B1), can
also decay to the singlet level |s〉 with the rate �se. The
corresponding decay operator is O3 = |s〉 〈A1|. The singlet
state can decay to the ground through three channels, to the
state with spin 0 at the rate �0s and corresponding decay
operator O4 = |A2, ms = 0〉 〈s| or to the states with spins ±1
with the rate �pms and corresponding decay operators O5 =
|A2, ms = +1〉 〈s| and O6 = |A2, ms = −1〉 〈s|. The values of
the decay rates are taken from Ref. [51] and are listed in
Table I. We assumed the z component of the magnetic field to
be Dgs/γe. The transverse magnetic field is assumed to point
in the x direction and have the value of 500 G. We show that
at this magnetic field one optical field is enough to couple the
electronic levels |+〉 and |1〉 to the excited state |Ex〉 (Fig. 3),
while leaving |−1〉 out of resonance. The microwave magnetic
field pulse in Fig. 3 is assumed to point in the y direction.
The corresponding optical and microwave Rabi frequencies
�o and �mw, respectively, are given in Table I. The optical
and microwave driving Hamiltonians are given by

Ĥo = �o(|Ex〉 〈A2| eiω1t + |A2〉 〈Ex| e−iω1t ),

Ĥmw = �mwŜy sin(ω2t ).
(B2)

We solve the Lindblad equation

ρ̇ = − i

h̄
[Ĥgs + Ĥes + Ĥo + Ĥmw, ρ]

+
6∑

i=1

�i

(
ÔiρÔ†

i − 1

2
Ô†

i Ôiρ − 1

2
ρÔ†

i Ôi

)
, (B3)

assuming the duration of the optical and microwave pulses
of 100 μs. Our simulation reveals that assuming the system
to be initially in equal superposition of the six ground states,
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after such procedure the system will be trapped in the lowest
ground state with the probability 98%.

APPENDIX C: AVERAGE GATE FIDELITY FOR
TRACE-NONPRESERVING MAPS

In this Appendix we give a proof of Eq. (20), extending the
result of Horodecki et al. [36] and Nielsen [37]. In their work
they relate the average gate fidelity of a quantum map to its
entanglement fidelity.

For convenience, let us briefly recall some definitions
necessary to comprehend Eq. (20). A quantum map is a C-
linear map which takes density operators, acting on some
state Hilbert space, to another density operator. Especially,
E preserves Hermiticity and is completely positive and trace
preserving. The average fidelity is defined as

F (E ) ≡
∫

〈ψ | E (ψ ) |ψ〉 dψ, (C1)

where E (ψ ) ≡ E (|ψ〉 〈ψ |). The average gate fidelity F (U ◦
E ) [where U (ρ) ≡ U †ρU ] serves as a measure of how well a
desired unitary gate U is approximated by E . The integration
measure dψ is taken to be the Haar measure,

∫
dψ = 1, and

is integrated over the state space of the system. The entan-
glement fidelity, as introduced in [52], requires an extension
of the system Hilbert space H to a larger Hilbert space H̃ =
Q ⊗ H, where Q is a copy of H. The entanglement fidelity of
E is then given by

Fe(E ) ≡ 〈φ| (1 ⊗ E )(φ) |φ〉 , (C2)

where |φ〉 ∈ H̃ denotes a maximally entangled state. Note
that while computing F (E ) is generally very hard due to
the integration, the entanglement fidelity is much easier to
calculate (upon choosing a unitary operator basis). It is thus
desirable to have a relation between the two quantities which
was found in [36] to be

F = dFe + 1

d + 1
, (C3)

d being the dimension of the system Hilbert space H.
However, as noted in the main text, if one is interested

merely in the evolution of a subspace Hs ⊂ H it can occur
that the respective quantum map on that subspace is not trace
preserving and thus violates one of the conditions leading to
Eq. (C3). In such a case it is desirable to find a generalized
relation applying to trace-nonpreserving quantum maps as
well.

Claim. Let E be a trace-nonpreserving quantum map acting
on density matrices of a d-dimensional Hilbert space H. Then
its average gate fidelity is given by

F = dFe + Tr[E (1/d )]

d + 1
.

The general idea of the proof follows the one of Nielsen
[37], suitably modified for the trace-nonpreserving case. We
thus state some of the initial steps without showing them
explicitly (instead referring to Nielsen’s paper) and are more
careful with the modified parts.

Proof. First, we define the twirled map

ET (ρ) ≡
∫

U †E (UρU †)UdU, (C4)

where dU denotes the uniform Haar measure on the space of
unitary operators U and ρ is a density operator, both acting on
the Hilbert space H. Note that ET inherits linearity from E . It
is shown in [37] that the twirling of E leaves F and Fe invariant
(note that no use is made of the trace-preserving property by
Nielsen at this point). Hence, it suffices to prove the relation
for ET . It can be shown that for any unitary V

VET (ρ)V † = ET (V ρV †). (C5)

This holds true for arbitrary density operators ρ. Specifically,
consider a one-dimensional projector P and its orthogonal
complement Q = 1 − P on H. Choose V to be block diag-
onal with respect to these subspaces, i.e., V PV † = P. From
Eq. (C5) it follows that VET (P)V † = ET (P). Thus, ET (P) is
block diagonal as well and can be written in the form

ET (P) = αP + βQ = β1 + (α − β )P. (C6)

Note that this is similar to a depolarizing channel; however, its
trace is not unity in general (this is where the proof deviated
from [37]). The coefficients α, β ∈ C are determined by the
probability of depolarization and the trace of ET (P). First, we
can express α as

α = TrET (P) − β(d − 1) (C7)

by taking the trace of Eq. (C6). Note that since TrET (P) ∈ R,
in fact we have α, β ∈ R. Define β ≡ p/d and c ≡ TrET (P)
such that the twirled map can be expressed as

ET (P) = p

d
1 + (c − p)P. (C8)

In the next step we show that, in fact, p and c are independent
of the choice of P. Note that an arbitrary one-dimensional
projector on H can be obtained as P′ = V PV † with a unitary
V . Now, applying Eqs. (C5) to (C8) gives

ET (P′) = ET (V PV †) = p

d
1 + (c − p)P′. (C9)

This shows that p and c are independent of the choice of P (for
c this is apparent from Tr[VET (P)V †] = TrET (P) as well).
Since an arbitrary density operator ρ can be expressed as a
linear combination of one-dimensional projectors and ET is a
linear map, we have

ET (ρ) = p

d
1 + (c − p)ρ. (C10)

With ET of the above form, F and Fe can be calculated
explicitly: F = p/d + c − p and Fe = p/d2 + c − p. This
immediately yields Eq. (C3) where 1 in the numerator is
replaced by c. Finally, since c is independent of the density
operator that ET acts on, we can express it in a natural way
as c = TrET (1/d ) = TrE (1/d ), where the second equality
follows from the definition of ET and linearity of the trace. Our
formula now follows from the invariance of F and Fe under
twirling. �

Note that for trace-preserving E we have c = 1 and recover
Eq. (C3) from our formula.
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