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Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers:
Twistronics meets spintronics
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We propose an interband tunneling picture to explain and predict the interlayer twist-angle dependence of
the induced spin-orbit coupling in heterostructures of graphene and monolayer transition metal dichalcogenides
(TMDCs). We obtain a compact analytic formula for the induced valley Zeeman and Rashba spin-orbit coupling
in terms of the TMDC band structure parameters and interlayer tunneling matrix elements. We parametrize
the tunneling matrix elements with few parameters, which in our formalism are independent of the twist angle
between the layers. We estimate the value of the tunneling parameters from existing density functional theory
calculations at zero twist angle and we use them to predict the induced spin-orbit coupling at nonzero angles.
Provided that the energy of the Dirac point of graphene is close to the TMDC conduction band, we expect a
sharp increase of the induced spin-orbit coupling around a twist angle of 18◦.
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I. INTRODUCTION

Since its isolation, graphene [1,2] has shown a plethora
of interesting phenomena [3]. Among others, long spin-
relaxation times [4,5] and spin-diffusion lengths [6] have
been observed in graphene, making it a strong candidate
for spintronics applications [7]. However, the weak intrinsic
spin-orbit coupling (SOC) of graphene [8] hinders the control
and tunability of possible spintronics devices. Moreover, a
higher SOC in graphene is also desirable to produce, e.g., the
quantum spin Hall effect, initially predicted in this material
[9], or pseudohelical edge states [10] in zigzag ribbons.

A recent impetus to graphene spintronics has been given
by van der Waals engineering [11], i.e., the fabrication of het-
erostructures of different two-dimensional materials weakly
bound by van der Waals forces. These heterostructures can
possess functionalities that the individual constituent layers
may not have. In order to increase the SOC in graphene, one
of the most actively pursued directions is to interface it with
materials that have strong intrinsic SOC, such as transition
metal dichalcogenides (TMDCs) [12–26]. TMDCs are ex-
pected to be good candidates for graphene spintronics for two
reasons: (i) it was shown that TMDC substrates do not degrade
the mobility of graphene [24,27], and (ii) they host a strong
intrinsic SOC of the order of 100 meV (10 meV) in their
valence (conduction) band [28] and hence can potentially be
suitable materials for proximity-induced SOC. The increase
of SOC in graphene would affect its spin-transport proper-
ties (see Ref. [29] for a recent review of spin transport in
graphene–TMDC heterostrutures). Here, we briefly mention
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that, e.g., the measurement of weak antilocalization (WAL)
[13–15,17,20–22] and the beating of Shubnikov–de Haas
oscillations (SdH) [14] proved that SOC is strongly enhanced
in graphene–TMDC heterostructures. Details regarding the
type and magnitude of the proximity-induced SOC are less
clear. Based on WAL measurement, Refs. [15,17] argued that
the induced SOC in graphene is of Rashba type which is due
to the inversion symmetry-breaking effect of the substrate.
The measurements of a large anisotropy of the in-plane and
out-of-plane spin-relaxation times [18,25] can be interpreted
[30] as an indication that a valley Zeeman type SOC is also
induced and its magnitude is comparable to the Rashba type
SOC. This is consistent with the data extracted from SdH
oscillations [14] and a similar conclusion was also reached
in a more recent WAL measurement [21]. These measure-
ments usually employed either bulk or few-layer TMDC
substrate. On the other hand, Ref. [22] found that a mono-
layer TMDC substrate may induce strong Kane-Mele type
SOC.

On the theoretical side, density functional theory (DFT)
calculations for aligned graphene–TMDC structures [13,
31–34] showed that SOC can be induced in graphene. Direct
comparison between these theoretical results and the mea-
surements is not straightforward. First, the DFT band struc-
ture calculations are usually fitted with model Hamiltonians
for graphene in order to extract the SOC constants and the
corresponding energy scales. However, most measurements
yield information on spin-relaxation times. Therefore, further
information about intervalley scattering times as well as the
dominant spin-relaxation mechanisms is needed in order to
interpret the observations in terms of SOC energy scales.
Second, while most measurements used few-layer TMDCs as
substrates, the DFT calculations assumed monolayer TMDCs.
It is not entirely clear if the differences in the band structure of
monolayer and bulk TMDCs can influence the induced SOC.
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Third, in contrast to the theoretical calculations, in the experi-
ments the layers were not intentionally aligned and in general
there is most likely to be a twist angle between them, as
observed in Ref. [35]. (We note that Refs. [36,37] performed
calculations for a few twist angles where the graphene and
TMDC layers form approximately commensurate structures,
but the SOC was not taken into account). The tight-binding
(TB) models of Refs. [38,39] considered aligned structures or
small twist angles. Only very recently was the TB methodol-
ogy extended to the calculation of induced SOC for arbitrary
twist angle between graphene and the TMDC substrate [40].

Here, we use an approach that describes the induced
SOC in terms of virtual band-to-band tunneling between
graphene and the monolayer TMDC substrate. This pertur-
bative approach is motivated by previous DFT calculations
[13,31–34,36,37] which show that the linear dispersion of
graphene close to the Dirac point is preserved because the
interaction between the layers is rather weak. In real space,
we take into account tunneling processes between graphene
and the closest layer of chalcogen atoms in the TMDC.
This approximation allows to obtain a simple and effective
parametrization of the interlayer tunneling using just two real
parameters. We show how these parameters can be applied to
describe tunneling for all twist angles. We then calculate the
induced valley Zeeman and Rashba type SOC in graphene as
a function of interlayer twist angle and demonstrate the close
relation between the intrinsic properties of the substrate
and the induced SOC in graphene. As a concrete example,
we consider graphene on monolayer MoS2, but the same
approach can be used for other semiconductor monolayer
TMDC where the Dirac point of graphene is in the band gap
of the substrate. The possibility to tune the strength of the
induced SOC in graphene by changing the interlayer twist
angle links graphene spintronics with the newly emerging
field of twistronics [41–44].

This paper is organized as follows. In Sec. II we present
the details of the heterostructure. In Sec. III we describe the
tunneling between the two layers and we introduce the idea of
tunneling to a band. We construct a Hamiltonian for the Dirac
points of graphene in Sec. IV and we indicate how valley
Zeeman and Rashba type SOC are induced in graphene by the
TMDC substrate in Secs. V and VI, respectively. We present
and discuss our result in Sec. VII and we draw our conclusions
in Sec. VIII.

II. TWISTED HETEROSTRUCTURE

Graphene [1–3] and monolayer TMDCs [28,45,46] share
the same two-dimensional (2D) hexagonal structure given by
two triangular sublattices A and B. For graphene the lattice
constant is aG = 2.46 Å and the two sublattices are occupied
by carbon atoms. Conduction and valence bands of graphene
show conic dispersion relations at the two inequivalent corners
of the Brillouin zone Kτ = τK = 4π/3aG(τ, 0), with τ =
±1, also known as Dirac points. A two-band nearest-neighbor
tight-binding (TB) model that takes into account only one pz

orbital per carbon atom leads to the Hamiltonian [3]

hgr
τK (k) = h̄vF (τkxσx + kyσy), (1)

FIG. 1. 3D view of graphene on top of monolayer TMDC. Here,
θ is the twist angle between graphene and the TMDC layer, while
d⊥ is the perpendicular distance between graphene and the upper
(closest) chalcogen layer of the TMDC.

where |k| � |K|, σx and σy are Pauli matrices for the sub-
lattice pseudospin and vF is the Fermi velocity of the elec-
trons. Monolayer TMDCs have larger lattice constants than
graphene (aT = 3.1–3.3 Å), therefore smaller Brillouin zones.
The metal atoms occupy the A sublattice sites, while the
chalcogen atoms are found on the B sublattice sites but
vertically shifted by ±dX -X /2, where dX -X is the chalcogen-
chalcogen distance [28]. We consider a heterobilayer van
der Waals structure formed by graphene deposited on top
of monolayer TMDC. The graphene layer is separated by
d⊥ from the topmost TMDC chalcogen layer (see Fig. 1).
Because of the lattice constant difference between graphene
and the TMDC they do not form a commensurate structure. In
general, the graphene lattice vectors can be rotated by angle θ

with respect to the TMDC lattice vectors and the A sublattice
of graphene may be shifted horizontally with respect to the
A sublattice of the TMDC by vector r0. [The vector r0 is
contained in the first (rotated) unit cell of graphene.] In the rest
of the paper, we use the following notations: primed quantities
are related to the TMDC and every vector r that is rotated by
an angle θ with respect to its original definition is indicated by
rθ = R(θ )r, where R is the rotation operator around the z axis.
The sublattice sites are found at the positions Rθ

X = n1aθ
1 +

n2aθ
2 + τθ

X + r0, RX ′ = n′
1a′

1 + n′
2a′

2 + τX ′ , where X = A, B
and X ′ = A′, B′ refer to the graphene and TMDC sublattice,
respectively. Here, a1,2 (a′

1,2) are the primitive lattice vectors
of graphene (TMDC) and τX (τX ′) indicates the position of
sublattice X (X ′) in the unit cell. See Appendix A for the
explicit definitions used in this work.

III. INTERLAYER TUNNELING

Looking at the ab initio calculations of Refs. [13,33], the
Dirac point of graphene is located inside the TMDC band
gap and its linear dispersion is mostly unaffected. However,
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modifications of the graphene bands very close to the Dirac
point indicate spin-orbit splittings and possibly the presence
of a spin-independent band-gap opening as well. We will use
perturbation theory to give a microscopic description of the
induced spin splitting of the graphene bands.

The total Hamiltonian has three parts, describing the
isolated eigenstates of graphene and TMDC and the in-
terlayer tunneling, respectively, Htot = Hgr + HTMDC + HT.
The theory for interlayer interactions in incommensurate
atomic layers [47] gives a compact analytic form, in mo-
mentum space, for the interlayer tunneling matrix ele-
ments UXX ′ (k, k′) = gr 〈X, kθ | HT |X ′, k′〉TMDC between un-
perturbed graphene and TMDC states. Here, X and X ′
run over the sublattice indices and, in general, also over
all the atomic orbitals located on the same sublattice site.
If there is only one atomic orbital per lattice site, the
Bloch states read as |X, kθ 〉gr = N−1/2 ∑

Rθ
X

eikθ ·Rθ
X |Rθ

X 〉 and

|X ′, k′〉TMDC = N ′−1/2 ∑
RX ′ eik′ ·RX ′ |RX ′ 〉 and the theory gives

[41,47,48]

UXX ′ (k, k′) =
∑
G,G′

δkθ+Gθ ,k′+G′ tX ′ (k′ + G′)

× eiGθ ·(τθ
X +r0 )−iG′ ·τX ′ , (2)

where G, G′ are reciprocal lattice vectors of graphene and
TMDC, respectively. The term δkθ+Gθ ,k′+G′ expresses quasi-
momentum conservation. In the derivation of Eq. (2) the
Slater-Koster two-center approximation [49] has been used,
whereby 〈Rθ

X | HT |RX ′ 〉 = TXX ′ (Rθ
X − RX ′ ) and the tunneling

strength in momentum space tX ′ (q) is the Fourier transform
of TXX ′ (R). As we consider only one pz orbital per car-
bon atom and we adopt the Slater-Koster approximation,
tX ′ (q) is insensitive to the graphene sublattice index X (see
Appendix B).

Considering now the graphene on monolayer TMDC het-
erostructure, in real space an electron from graphene may
tunnel to any of the three layers of atoms of the TMDC. How-
ever, the probability to reach the second or the third atomic
layers of the monolayer TMDC is exponentially suppressed
with respect to reaching the first, closest one. Therefore,
to describe the tunneling we consider only the first (upper)
chalcogen layer that is closer to graphene. In contrast to
graphene, monolayer TMDCs have a rather complicated band
structure. Since DFT calculations indicate that the Dirac point
of graphene is found inside the band gap of the TMDC, we
expect that the most important bands of the TMDC are those
nearest in energy, namely, the conduction and the valence
bands. These bands are mainly formed by metal atom d
orbitals, but the weights of chalcogen atom p orbitals are
nonzero [28]. It follows that the nearest chalcogen layer
approximation for tunneling can be used in combination with
the band description of the TMDC. Accordingly, we need to
extend the theory of Ref. [47] to consider tunneling not from
atomic orbital to atomic orbital, but from orbital to an energy
band.

The state of an electron in band b of the TMDC can be
written as a linear combination of single orbital Bloch states
|b, k′〉TMDC = ∑

X ′ cbX ′ (k′) |X ′, k′〉TMDC. Here, the complex
amplitudes cbX ′ (k′) are different for each band b. Since we

assume that the tunneling to the d orbitals is exponentially
suppressed, this sum runs over the three p orbitals of the
nearest chalcogen layer and τX ′ = τB′ when computing the
interlayer tunneling matrix. The formalism can be extended
in a straightforward way to include the tunneling to the metal
atoms’ d orbitals as well, but this would lead to several more
parameters to fit. As we will show in Sec. VII, using the
above approximation our calculations are already in good
qualitative agreement with previously known results. We in-
troduce the interlayer tunneling matrix element between or-
bital X of graphene and band b of the TMDC as UXb(k, k′) =
gr 〈X, kθ | HT |b, k′〉TMDC. As a consequence, tX ′ (k′ + G′) in
Eq. (2) is replaced by tb(k′ + G′), the band tunneling strength,

tb(k′ + G′) =
∑

X ′
cbX ′ (k′) tX ′ (k′ + G′). (3)

IV. BILAYER HAMILTONIAN

We expect |tb(q)| to decay very fast in |q| [41,47,48],
therefore, we consider only vectors k′ in the TMDC BZ
that respect the quasimomentum conservation of Eq. (2), i.e.,
τKθ + Gθ = k′ + G′, and such that |k′ + G′| is minimum. We
find that these two conditions are satisfied for three distinct
points τk′

j, j = 1, 2, 3, of the TMDC Brillouin zone (BZ), for
a fixed value of τ . This is similar to what happens for rotated
bilayer graphene [41]. When θ ∈ [0, π/3], for our choice of
reciprocal lattice vectors, these three points are

τk′
1 = τ (Kθ − b′

1),

τk′
2 = τ

(
Kθ + bθ

2 − b′
2

)
,

τk′
3 = τ

(
Kθ − bθ

1 + b′
1 + b′

2

)
,

(4)

where b1,2 (b′
1,2) are the primitive reciprocal lattice vectors of

graphene (TMDC). (See Fig. 2 and Appendix A.) Then, one
can show (see Appendices B and C) that the band tunneling
strength in Eq. (3) can be parametrized by two real numbers
t‖ and t⊥:

tb(τKθ ) = iτ [cbx(τk′
1) cos θ + cby(τk′

1) sin θ ] t‖
+ cbz(τk′

1) t⊥, (5)

where the connection between the Dirac point τKθ and the
first backfolded point τk′

1 is given in Eq. (4). We estimate
t‖ ≈ t⊥ ≈ 100 meV (see Appendix E for details). In order
to compute the band tunneling strength for all twist angles
θ , Eq. (5) requires the knowledge of the orbital amplitudes
cbp(τk′

j ), p = x, y, z, which are intrinsic properties of the
TMDC. We have obtained their values for MoS2 from the
tight-binding model of Ref. [50].

One can then set up a bilayer Hamiltonian valid for a neigh-
borhood of the Dirac point τK that describes the hybridization
with the TMDC:

H =

⎛⎜⎜⎜⎝
hgr,θ

τK (δk) Tτk′
1

Tτk′
2

Tτk′
3

T †
τk′

1
hTMDC

τk′
1

(δk) 0 0

T †
τk′

2
0 hTMDC

τk′
2

(δk) 0

T †
τk′

3
0 0 hTMDC

τk′
3

(δk)

⎞⎟⎟⎟⎠.

(6)
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FIG. 2. Backfolded TMDC BZ vectors satisfying the quasimo-
mentum conservation of Eq. (4) for the rotated Dirac point of
graphene Kθ . The dashed lines indicate the full paths of the back-
folded vectors in the range of twist angles θ ∈ [0, π/3]. Moreover,
Gθ

1,2 are rotated reciprocal lattice vectors of graphene, while G′
1,2,3 are

reciprocal lattice vectors of the TMDC. As an example, here we have
shown in orange the BZ of MoS2 (with lattice constant aT = 3.15 Å).

Here, δk is a small displacement, |δk| � |K|, from the back-
folded vectors τk′

j . The displacement from the Dirac point is

therefore δkα=−θ in graphene’s coordinate system. The rotated
graphene Hamiltonian reads as

hgr,θ
τK (δk) = h̄vF τ |δk|

(
0 e−iτ (ϕδk−θ )

eiτ (ϕδk−θ ) 0

)
⊗ 1S, (7)

with ϕδk = arctan(δkx/δky) and 1S is the identity matrix for
the spin degree of freedom. Moreover, hTMDC

τk′
j

(δk) describes

the Hamiltonian of the TMDC at a vector δk distance from
τk′

j . In the simplest case hTMDC
τk′

j
(δk) contains the dispersion

of those bands that we take into account, e.g., valence and
conduction bands. The dispersion of the bands can be ob-
tained, e.g., using the k · p method (see Appendix D) or taken
from TB calculations. In our case hTMDC

τk′
j

(δk) also includes

the effects of the intrinsic SOC of the TMDC on the band
structure (see Appendix F). The dispersion of the bands for
the TMDC Hamiltonians hTMDC

τk′
2,3

(δk) can be obtained from

hTMDC
τk′

1
(δk) because the points τk′

j have C3 symmetry with
respect to the 	 point of the TMDC BZ. Therefore,

hTMDC
τk′

2
(δk) = hTMDC

τk′
1

(δkα=−2π/3),

hTMDC
τk′

3
(δk) = hTMDC

τk′
1

(δkα=+2π/3).
(8)

Finally, the tunneling from the τKθ point of graphene to
the τk′

j points of the TMDC BZ is given by the interlayer
tunneling matrices Tτk′

j
. In our approximation, the tunneling

matrices do not depend on the value of the small wave vector
δk. Using Eqs. (2) and (3), for each band b of the TMDC that
we take into account in hTMDC

k′
j

(δk) the corresponding column

of the tunneling matrix Tτk′
j

reads as

(Tτk′
j
)b = e−iτG′

j ·τB′ eiτGθ
j ·r0tb(τKθ )

(
1

eiτφ j

)
, (9)

where G j = 0, b2,−b1 and G′
j = b′

1, b′
2,−b′

1 − b′
2 for j =

1, 2, 3, moreover φ j = G j · τB = 0, 2π/3,−2π/3. We as-
sume that Tτk′

j
preserves the spin degree of freedom and

therefore it is diagonal in the spin space.

V. VALLEY ZEEMAN SOC

In order to gain further understanding of how the intrinsic
properties of the monolayer TMDC determine the induced
valley Zeeman type SOC, we apply a Schrieffer-Wolff trans-
formation [51,52] to Eq. (6) to derive an effective graphene
Hamiltonian. Following Ref. [53], within second order the
correction to the graphene Hamiltonian reads as

δHgr,τ
Xs,X ′s =

∑
j,b

(
Tτk′

j

)
X,b

(
T †

τk′
j

)
b,X ′

Egr
D − ETMDC

bs (τk′
j + δk)

, (10)

where X, X ′ = A, B refers to the graphene sublattices, s =↑,↓
is the spin index, j = 1, 2, 3, and b is the band index. More-
over, Egr

D is the energy of the Dirac point that we fix, without
the loss of generality, to Egr

D = 0, while ETMDC
bs (τk′

j + δk) is
the energy of the TMDC band b, spin index s, at the BZ point
τk′

j + δk. We remark that Eq. (10) does not describe spin-flip
processes (δHgr,τ

X↑,X ′↓ = 0) because the tunneling matrices of
Eq. (9) are spin preserving. One can make use of the threefold
rotational symmetry to simplify Eq. (10) (see Appendix D).
Expanding ETMDC

bs up to linear terms in δk, it turns out that
the diagonal matrix elements δHgr,τ

Xs,Xs are δk independent:

δHgr,τ
Xs,Xs = −3

∑
b

|tb(τKθ )|2
Eb(k′

1) + sτ�0,b(k′
1)

, (11)

where Eb(k′
1) is the energy of the TMDC band b (ignoring

SOC) at k′
1, computed with respect to the Dirac point of

graphene and �0,b(k′
1) is the spin splitting of band b at k′

1 due
to the diagonal part of the intrinsic SOC of the TMDC [28].
Equation (11) describes two twist-angle-dependent effects:
(i) a spin-independent shift of the Dirac point with respect
to TMDC bands and, (ii) a spin splitting of the graphene
bands. The latter can be described by the Hamiltonian HVZ =
λVZ τ sz, where sz is a Pauli matrix for spin. We follow the
notation of Ref. [30] where the Hamiltonian term HVZ de-
scribes the induced valley Zeeman SOC. This corresponds to
the intrinsic SOC Hamiltonian of Ref. [33] with λA

I = −λB
I =

λVZ or to the staggered intrinsic SOC model of Ref. [10] with
λI = λVZ. We find that the constant λVZ is given by

λVZ = 3
∑

b

|tb(τKθ )|2�0,b(k′
1)

E2
b (k′

1) − �2
0,b(k′

1)
. (12)

This is the first important result of our work. It shows ex-
plicitly how λVZ depends on the intrinsic properties of the
TMDC substrate and the twist angle θ between the layers.
The latter determines the wave number k′

1 and affects the
tunneling strength tb(τKθ ) through Eq. (5). We note that in
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this second-order perturbation theory no staggered sublattice
potential leading to a spin-independent band gap is obtained.

The off-diagonal matrix elements δHgr,τ
As,Bs(δk) in Eq. (10)

are δk dependent:

δHgr,τ
As,Bs(δk) = 3

2

(∑
b

wbsτ,τ (k′
1)|tb(τKθ )|2

E2
bsτ (k′

1)

)
[τδkx − iδky],

(13)

where Ebsτ (k′
1) = Eb(k′

1) + sτ�0,b(k′
1) and wbsτ,τ (k′

1) is a
complex quantity related to the local slope of the TMDC band
b (see Appendix D). Equation (13) gives a correction to the
Fermi velocity of pristine graphene. The proximity-corrected
Fermi velocity is

ṽF =
∣∣∣∣∣vF + eiτθ 3

2h̄

∑
b

wbsτ,τ (k′
1)|tb(τKθ )|2

E2
bsτ (k′

1)

∣∣∣∣∣. (14)

We have numerically computed this correction for a pristine
graphene Fermi velocity vF = 106 m/s, using MoS2 as the
TMDC compound. The correction we find is in the order of
±0.2% depending on the twist angle. In general, the value
of vF is more sensitive to the dielectric constant of the
environment [54], therefore, we will not discuss this effect
further.

VI. RASHBA TYPE SOC

As already mentioned, WAL measurements suggest that a
Rashba type SOC is also induced in graphene. Traditionally,
the Rashba SOC in graphene was understood in terms of
a symmetry-breaking effect of a perpendicular electric field
[7,8,55]. More generally, one can expect that Rashba type
SOC is induced when structural asymmetry is present in
the heterostructure. Indeed, the DFT calculation of Ref. [33]
indicated that even for zero external electric field a finite
Rashba SOC is induced in graphene. To our knowledge, the
microscopic mechanisms giving rise to the induced Rashba
SOC has not yet been discussed. We show that an important
contribution comes from virtual interlayer tunneling processes
that are facilitated by the off-diagonal spin-flipping elements
of the intrinsic SOC matrix of the monolayer TMDC, indi-
cated by (Hsoc)b↑,b′↓ and (Hsoc)b↓,b′↑. Such off-diagonal matrix
elements are allowed between pairs of bands if one of the
bands is symmetric (even) and the other one is antisymmetric
(odd) with respect to reflection on the horizontal mirror plane
of the TMDC (see, e.g., Ref. [56] for further discussion of
the SOC in monolayer TMDCs). In third-order perturbation
theory one finds the following matrix elements [53]:(

δHgr,τ
R

)
X↑,X ′↓

=
∑
j,b,b′

(
Tτk′

j

)
X,b(Hsoc)b↑,b′↓(T †

τk′
j
)b′,X ′[

Egr
D − ETMDC

b (τk′
j )
][

Egr
D − ETMDC

b′ (τk′
j )
] (15)

and (δHgr,τ
R )X↓,X ′↑ is analogously defined. Here, b �= b′ is

the band index and in the denominator we have neglected
the dependence of the TMDC band energies ETMDC

b (τk′
j )

on the intrinsic SOC [cf. Eq. (10)] because it would lead
to higher-order effects. The matrix elements (Hsoc)b↑,b′↓ can
be calculated using the TB model of Ref. [50], while the

tunneling matrices (Tτk′
j
)X,b and (T †

τk′
j
)b′,X ′ can be obtained

in the same way as explained in Sec. IV. As we show in
Appendix F, each pair of even and odd bands leads to a Rashba
SOC strength

λR,eo = 6γd |Te,o(Kθ )||�1(k′
1)|[

Egr
D − ETMDC

e (k′
1)

][
Egr

D − ETMDC
o (k′

1)
] (16)

and to a complex phase factor eiϑeo , where ϑeo = Arg[�1(k′
1)].

Here, γd is the atomic SOC strength of the metal atoms’
d orbitals of the TMDC, Te,o(Kθ ) = te(Kθ )t∗

o (Kθ ), with tb
defined in Eq. (5) and �1 is a complex quantity formed by
the SOC matrix elements of the TMDC. We give the explicit
definition of �1 as well as the details of the calculations
leading to Eq. (16) in Appendix F. To obtain the total Rashba
SOC strength, one has to sum over all possible pairs of even
and odd bands, including the complex phase factors eiϑeo .
Therefore, one has

λR,tot = ∣∣λR,e1o1 eiϑe1o1 + λR,e2o2 eiϑe2o2 + · · · ∣∣,
ϑtot = Arg

[
λR,e1o1 eiϑe1o1 + λR,e2o2 eiϑe2o2 + · · · ]. (17)

In the end one finds that the induced Rashba type
SOC in graphene reads as HR = (λR,tot/2) e−iϑtotsz/2(τσxsy −
σysx )eiϑtotsz/2, where sx, sy are spin Pauli matrices. As one can
see from Eq. (16) the induced Rashba type SOC, similarly to
the induced valley Zeeman SOC, is a second-order process in
the interlayer tunneling, but in addition it involves a spin-flip
process within the monolayer TMDC. We show the results of
our numerical calculations for λR in Fig. 5. Up to third order
of perturbation theory we did not find processes that would
lead to a term similar to the Kane-Mele type SOC. Therefore,
the total effective graphene Hamiltonian reads as

HG(δk) = hgr
τK (δk) + HVZ + HR

= h̄vF (τkxσx + kyσy) + λVZ τ sz (18)

+ (λR,tot/2) e−iϑtotsz/2(τσxsy − σysx )eiϑtotsz/2,

using Eqs. (1) and (12) for the first two terms and Eq. (17)
for HR.

VII. DISCUSSION

In order to show explicitly how the twist angle θ between
the layers affects the induced SOC in graphene, we need
the band structure of the TMDC substrate and the weights
cb,x,y,z(τk′

1) for all backfolded points k′
1 in the BZ along

the path shown in Fig. 2. As a concrete example, we take
monolayer MoS2 (lattice constant aT = 3.15 Å [28]) and we
extract these values from the TB model of Ref. [50]. We
have checked that the p orbital weights cb,x,y,z(τk′

1) extracted
from this TB model agree quite well with the correspond-
ing results of Ref. [28] along high-symmetry directions in
the Brillouin zone. We assume therefore that these weights
can be reliably extracted for the relevant non-high-symmetry
momentum space points shown in Fig. 2. Similarly, since the
band structure calculated from this TB model agrees well with
the DFT band structure, we assume that the spin-orbit splitting
and the band-edge energy differences of the TMDC bands
can be reliably extracted for all momentum space points of
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interest. The ab initio calculations from Ref. [33] show the
Dirac point very close to the conduction band of MoS2, while
experimental results reported in Ref. [35] indicate that the
Dirac point should be found in the middle of the MoS2 band
gap. Because of these discrepancies, we treat the energy of
the Dirac point of graphene within the band gap of the TMDC
as a parameter in our theory. We parametrize this energy by
a number fG ∈ [0, 1] whose value is a linear function of the
position of the Dirac point in the TMDC band gap. When
fG = 0, the Dirac point is aligned with the TMDC valence
band edge, while for fG = 1 the Dirac point has the same
energy as the TMDC conduction band edge.

According to Eq. (12), the strength of the induced valley
Zeeman SOC has three main contributions from each band b:
(i) it is proportional to the magnitude square of the tunneling
strength |tb|2 and (ii) to the spin splitting �0,b, while (iii) it
is inversely proportional to the energy difference E2

b − �2
0,b.

In our numerical calculations of λVZ, shown in Figs. 3(c) and
3(d), we take into account two bands, the conduction (b = c)
and the valence (b = v) bands (CB and VB). We plot �0,c

and �0,v in Figs. 3(a) and 3(b) for the whole BZ of monolayer
MoS2 and in Fig. 3(e) along the path of the k′

j points. Again
along this path, we report the values of |tc|2 and |tv|2 in
Fig. 3(f).

First, we consider the case of the Dirac point close to the
conduction band ( fG ≈ 1) as reported by DFT calculations
[33]. Using Eq. (12), the calculated λVZ is plotted in Fig. 3(c).
One can see that starting from a small negative value at θ �
0◦, λVZ vanishes for θ ≈ 10◦ and then increases to 2 meV
just before θ = 20◦. Then, λVZ goes back to zero at θ = 30◦

and the dependence is reflected with opposite sign between
θ = 30◦ and 60◦. To understand these features, notice that
Eqs. (10) and (12) suggest that when the Dirac point is very
close to the CB (VB), the contribution from the VB (CB)
to λVZ is suppressed by the large value of E2

v (k′
1) [E2

c (k′
1)].

Hence, for fG ≈ 1, the behavior of λVZ over θ ∈ [0, π/3] is
qualitatively well explained by the contribution of the CB and
the VB can be neglected.

The reason for the vanishing λVZ for θ ≈ 10◦ and 30◦ is
that also the TMDC CB spin splitting goes to zero and changes
sign at these angles. The zero spin splitting at θ = 30◦ appears
because the backfolded points k′

j lie on the 	-M line which by
symmetry has no spin splitting [28]. In the case of θ ≈ 10◦,
the backfolded points k′

j encounter a spin-splitting inversion
of the TMDC conduction band [see Fig. 3(a)], i.e., the spin-
split conduction bands cross along certain low-symmetry lines
in the BZ. The peak around θ = 20◦ is expected for multiple
reasons. Close to θ = 20◦ both spin splitting �0,c(k′

1) and
tunneling strength tc(Kθ ) reach their largest absolute values
[see green lines of Figs. 3(e) and 3(f)]. For �0,c(k′

1) this
happens because the backfolded points k′

j in the TMDC BZ
get very close to the Q valley of the CB, in the middle of the
	-K line, which has large spin splitting [see Fig. 3(a)] [28].
The tunneling strength peak instead comes from a larger local
weight of the pz orbitals [larger magnitude of orbital ampli-
tudes ccz(τk′

1) in Eq. (5)]. Additionally, the energy distance
between the Dirac point of graphene and the bottom of the
Q point, which is a valley of the CB, is also smaller than for
other k′

1 points in the BZ. We have checked that the above

FIG. 3. (a), (b) Spin splitting in conduction (a) and valence band
(b) of the TMDC. Blue (orange) arcs indicate the paths of the three
backfolded vectors k′

j (−k′
j) for Dirac point K (−K). (c) Valley

Zeeman spin-orbit strength induced in graphene when the Dirac
point energy is close to the TMDC conduction band edge ( fG = 1).
The blue (orange) line shows the result of second-order perturbation
theory for Dirac point K (−K), as derived in Eq. (12). The dashed
black line is obtained from the exact diagonalization of the bilayer
Hamiltonian (6) for K. (d) Same as (c) but in the case when the Dirac
point energy is in the middle of the TMDC band gap ( fG = 0.55) and
with a larger TMDC band gap of EG = 2.0 eV in order to reproduce
the case of Ref. [35]. (e) Spin-orbit splitting in TMDC encountered
by the backfolded vectors of K along the paths in (a) (green line)
and (b) (purple line). (f) Tunneling strength squared for a tunneling
process from graphene to the conduction (green line) or the valence
band (purple line) of the TMDC. The gray vertical lines in (c), (e),
and (f) highlight the angles where the backfolded vectors k′

j get
as close as possible to the maximum of the spin splitting in the
conduction band of the TMDC.

comments remain valid even if we add in the calculation the
first band above the conduction band (CB + 1). Including this
higher band does not change qualitatively the values of λVZ.

To confirm the behavior predicted by second-order pertur-
bation theory, we have computed λVZ at δk = 0 from exact
diagonalization of the bilayer Hamiltonian in Eq. (6). Only the
CB and the VB were taken into account in hTMDC

τk′
j

. The result

is shown in Fig. 3(c) by a dashed black line. The agreement
is very close except for the largest absolute values where the
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FIG. 4. Induced valley Zeeman SOC as a function of the twist
angle θ and the parameter fG that indicates how close the Dirac point
lies to the conduction ( fG = 1) or to the valence band ( fG = 0). The
dashed black lines indicate the two values of fG = 1 and fG = 0.55
used in Figs. 3(c) and 3(d), respectively.

second-order perturbation results deviates by around 10%. In
these regions the Dirac points are quite near in energy to the
CB of the TMDC and the small parameter |tb|/(Eb ± �0,b)
increases up to 0.16. The numerical diagonalization of Eq. (6)
also confirmed that in our model no spin-independent band
gap is opened at the Dirac point.

It is known that DFT calculations (and TB models fitted to
DFT calculations) underestimate the band gap of the TMDC.
Indeed, the ARPES experiment of Ref. [35] reports a larger
band gap of 2.0 eV. Moreover, according to Ref. [35], in
graphene–TMDC bilayers, the Dirac point of graphene is
found in the middle of the TMDC band gap ( fG ≈ 0.55). For
these reasons we have computed the induced valley Zeeman
SOC in Eq. (12) for these alternative parameters (CB and VB
dispersions were taken from the TB model as before). The
results are plotted in Fig. 3(d). Here, the contribution from
the VB is larger close to θ = 0◦ and 60◦ [see purple lines in
Figs. 3(e) and 3(f)] while it fades away around θ = 20◦ and
40◦ where the CB contribution is more significant [see green
lines in Figs. 3(e) and 3(f)]. Nevertheless, the values for λVZ

predicted in Fig. 3(d) are one order of magnitude lower than
those in Fig. 3(c) (Dirac point close to CB). They are indeed
suppressed by the large distance of the Dirac point from both
CB and VB. We show in Fig. 4 the value of λVZ computed
from Eq. (12) for all values of fG between 0 and 1. The
dashed black lines indicate the two cuts at fG = 1 [Fig. 3(c)]
and fG = 0.55 [Fig. 3(d)]. One can observe that close to the
VB ( fG ≈ 0) the induced valley Zeeman SOC is comparable
to the values obtained for fG ≈ 1. However, for fG ≈ 0 the
strongest induced SOC appear close to θ = 0◦ and 60◦. The
contribution of the VB to the induced SOC can be important,
e.g., for graphene-monolayer WSe2 heterostructures, where
DFT calculations [33] indicate that the Dirac point is closer
to the VB edge.

In Fig. 5 we show the induced Rashba type SOC as a
function of the twist angle θ between the layers. In these
calculations we again considered MoS2 as a concrete example.
In Fig. 5(a) we have used fG = 1, while in Fig. 5(b) we
have set fG = 0.55 and we have rigidly shifted the bands
of the TMDC in order to reach a band gap of 2.0 eV. We
have therefore reproduced the case of Ref. [35], as done for
Fig. 3(d). The gray lines indicate the separate contributions

FIG. 5. Magnitude of the induced Rashba type SOC, λR, as a
function of the twist angle θ for fG = 1 (a) and fG = 0.55 (b). In
(b) we have also set the TMDC band gap to EG = 2.0 eV in order
to reproduce the case of Ref. [35]. The purple lines shows the total
Rashba type SOC, the gray lines indicate separately the contribution
related to two asymmetric bands above the conduction band and an
asymmetric band below the valence band, respectively.

to Eq. (15) of three pairs of symmetric-antisymmetric bands.
In particular, we consider the interaction of the symmetric
CB with two asymmetric bands higher in energy and the
interaction of the symmetric VB with one asymmetric band
lower in energy. The purple lines represent the total sum of
the three gray contributions taking into account the complex
phases associated with them (see Appendix F for details
of the calculation). One can see that the twist angle can
considerably change the value of the SOC strength λR. For
fG = 1, a threefold increase of λR can be observed at θ ≈ 20◦
with respect to the θ = 0◦ case. This is a somewhat smaller
increase than in the case of λVZ, nevertheless, it shows that
λR is tunable by the twist angle. The increase of λR close
to 20◦ can partially be explained by the fact that one of the
asymmetric bands, whose energy appears in the denominator
of Eq. (15), is quite close to the conduction band in the vicinity
of the Q point. Comparing Figs. 3(c) and 5(a) one can see that
for θ ≈ 0◦ the values of λVZ and λR are comparable, while for
θ ≈ 20◦ the valley Zeeman SOC dominates the Rashba type
SOC. One can also see that λR drops to a small but nonzero
value for θ = 30◦. This can be qualitatively understood by
looking at Fig. 3(f) which shows that the tunneling to the
conduction band, which appears in the numerator of Eq. (16),
has a sharp minimum for this angle. For the fG = 0.55 case we
notice that, similarly to the valley Zeeman SOC, the maximum
value drops quite significantly. This is again a consequence of
the large energy distance of the Dirac point from both the CB
and the VB of the TMDC. However, the maximum value of
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λR can still be found at a finite twist angle for fG = 0.55, it
does not shift to zero twist angle, as it does in the case of
λVZ. In spite of this reduction of the strength of the induced
SOC as a function of fG, it may still be detected since a
recent experiment has shown that SOC strengths of the order
of ∼0.1 meV may be detected in graphene though resonance
microwave measurements [57].

Finally, we note that Ref. [40] studied the same graphene-
monolayer TMDC heterostructures using a TB model to de-
scribe both graphene and the monolayer TMDC and setting
up a TB parametrization for the interlayer coupling. This
approach, in principle, takes into account the coupling be-
tween all bands of the monolayer TMDC and graphene but
also necessitates a number of new TB parameters to describe
the interlayer coupling. For graphene-monolayer MoS2 our
results are, both for the induced valley Zeeman and the Rashba
type SOC, qualitatively similar to Ref. [40], which indicates
that our approach captures the most important ingredients
contributing to the induced SOC. However, the vanishing and
sign change of λVZ at θ ≈ 10◦ was not predicted in Ref. [40].
As explained above, we identified the band structure feature
of the monolayer MoS2 that gives rise to this behavior of λVZ

and we believe that it is not an artifact of our approach. This
feature should appear in graphene–TMDC bilayers for other
semiconductor monolayer TMDC compounds, not only for
MoS2. Regarding the induced Rashba SOC, for θ = 0◦ our
result is in good qualitative agreement with Ref. [33], where
λR was extracted from DFT calculations on commensurate
graphene–TMDC supercells.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have presented the analytic twist-angle
dependence of the induced spin-orbit coupling in graphene
from the van der Waals interaction with monolayer TMDC.
This fills the gap between experimental and theoretical works
on twisted graphene–TMDC heterobilayers. While experi-
ments most likely have a twist angle between the layers of
the heterostructure, often unaccounted for in the analyses of
the results and different from sample to sample, theory only
considered zero or small twist angles. Here, we have shown
that the induced SOC may vary significantly and even vanish
as a function of the twist angle and of the position of the Dirac
point in the TMDC band gap, therefore, the knowledge of
both θ and fG is important in order to compare experiments
performed with different samples. The largest values of the
induced valley Zeeman type SOC are ∼2 meV when the
Dirac point of graphene is close to the conduction band of
the TMDC. In comparison, the intrinsic spin-orbit coupling of
isolated graphene is expected to be in the order of 20–40 μeV
[8,57]. This indicates that, by juxtaposing monolayer TMDCs
and by engineering the twist angle between the two layers,
the induced SOC in graphene can be two orders of magnitude
larger than the intrinsic one. We also identified a microscopic
mechanism that gives rise to an induced Rashba type SOC and
we have found that it can also be significantly enhanced as a
function of the twist angle.

The use of a band-to-band tunneling picture was funda-
mental to reach our results. This framework simplifies the
study of heterobilayers where the band structure of the indi-

vidual constituent layers is well known and understood. Simi-
larly to Ref. [40], it can also be used if the lattice constants
of the individual layers are incommensurate. Moreover, as
the complexity of the material increases and the number of
orbitals involved in its valence and conduction bands becomes
large, an orbital-to-orbital tunneling picture to describe in-
terlayer tunneling would require a tight-binding model with
many parameters. In graphene–TMDC heterostructures, by
using the nearest chalcogen layer approximation and the
Fourier transform of the Slater-Koster matrix elements, the
interlayer tunneling parametrization was reduced to just two
overlap integrals. The bands of the isolated layers can be
approximated by k · p theory which helped to obtain the in-
duced SOC by applying quasidegenerate perturbation theory.
Using this approach we were able to separate the contribution
from the different bands and analyze the behavior of the
induced valley Zeeman and Rashba type SOC as a function
of the interlayer twist angle. Our approach makes the role
of the intrinsic properties of the substrate more apparent
and, therefore, it might be used to screen potential substrate
materials for desired induced SOC properties in van der Waals
heterostructures.

We assumed perfectly ballistic layers in our work. An in-
teresting extension would be to study the induced SOC in the
presence of disorder effects. This may affect the interpretation
of WAL measurements, as the interplay between spin, valley,
and disorder physics yields a rich behavior of the quantum
correction to the conductivity [58]. Another important effect
might be the presence of graphene domains with different
twist angles. According to Fig. 3(c), if the average twist angle
is small, the induced valley Zeeman SOC can be positive in
some domains and negative in others. The effects of such
nonuniform induced SOC on, e.g., the spin-transport proper-
ties of the sample would require further studies.
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APPENDIX A: DEFINITIONS OF LATTICE VECTORS

Graphene and monolayer TMDCs share the same
2D hexagonal structure, but with different lattice con-
stants. As before, primed quantities are related to the
TMDC. The primitive vectors for the hexagonal lattice are
a1,2 = a(±1/2,

√
3/2) with lattice constant a = aG (a =

aT ) for graphene (TMDC). The B sublattice is shifted
by δ = a/

√
3(0, 1). The primitive reciprocal lattice vec-

tors b1,2 follow the relation ai · b j = 2πδi j , where δi j is
the Kronecker delta, and are explicitly given by b1,2 =
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4π/a
√

3(±√
3/2, 1/2). In the heterobilayer studied in this

paper, graphene is on top of the TMDC layer, separated
from the topmost TMDC chalcogen layer by d⊥ (see Fig. 1).
The positions of the atoms in the unit cell are given by τX

for graphene and by τX ′ for the TMDC, with X = A, B and
X ′ = A′, B′

1, B′
2, where B′

1 (B′
2) indicates the upper (lower)

chalcogen atom site. We fix the origin of our coordinate
system above a metal atom in the TMDC, but in the same
plane as the upper chalcogen layer,

τA = d⊥êz, τB = δ + d⊥êz,

τA′ = −dX -X

2
êz, τB′

1
= δ′, τB′

2
= δ′ − dX -X êz, (A1)

with dX -X the TMDC chalcogen-chalcogen distance.

APPENDIX B: SLATER-KOSTER TUNNELING
COEFFICIENTS AND THEIR FOURIER TRANSFORM

We are interested in the tunneling between the pz orbitals of
the carbon atoms in graphene and the p orbitals of the closest
TMDC chalcogen layer. Using the two-center approximation,
the real-space tunneling matrix elements TXX ′ (R) can be writ-
ten in terms of Slater-Koster parameters [49]

Tpz,pz (R) = n2
zVppσ (R) + (

1 − n2
z

)
Vppπ (R), (B1a)

Tpz,px (py )(R) = nx (y)nz[Vppσ (R) − Vppπ (R)], (B1b)

with R = |R| and (nx, ny, nz ) = R/R. Since X = A, B refers
always to the pz orbitals of the carbon atoms in graphene,
there is no real dependence on X and we omit it in the
following, TXX ′ = TX ′ .

In cylindrical coordinates (r, ϕ, z) we have r = r cos ϕ êx +
r sin ϕ êy, R = r + zêz, R = √

r2 + z2, and

nx = r cos ϕ√
r2 + z2

, ny = r sin ϕ√
r2 + z2

, nz = z√
r2 + z2

.

We can separate the radial part from the angular part in
Eqs. (B1),

Tpz (r, ϕ, z) = fz(r, z), (B2a)

Tpx (r, ϕ, z) = cos ϕ fx(r, z), (B2b)

Tpy (r, ϕ, z) = sin ϕ fx(r, z), (B2c)

where

fz(r, z) = 1

R2
[z2Vppσ (R) + r2Vppπ (R)],

fx(r, z) = fy(r, z) = rz

R2
[Vppσ (R) − Vppπ (R)]. (B3)

In Eqs. (B2), we refer to the ϕ-dependent parts as aX ′ (ϕ), with
az(ϕ) = 1, ax(ϕ) = cos ϕ, and ay(ϕ) = sin ϕ. Hence, we can
write TX ′ (r, ϕ, z) = aX ′ (ϕ) fX ′ (r, z). Then, we take the Fourier
transform of Eqs. (B1) [47]:

tX ′ (q) = 1√
SS′

∫
TX ′ (r + zêz )e−iq·rd2r

= 1√
SS′

∫ ∞

0
dr r fX ′ (r, z)

×
∫ π

−π

dϕ aX ′ (ϕ)e−iqr cos(ϕ−ϕq ), (B4)

where q = (q cos ϕq, q sin ϕq) and S (S′) is the unit-cell size of
graphene (TMDC). The integral over the angle can be solved
using the Jacobi-Anger expansion [59,60]∫ π

−π

dϕ e−iqr cos(ϕ−ϕq ) = 2πJ0(qr), (B5a)∫ π

−π

dϕ cos ϕ e−iqr cos(ϕ−ϕq ) = −2π iJ1(qr) cos ϕq, (B5b)∫ π

−π

dϕ sin ϕ e−iqr cos(ϕ−ϕq ) = −2π iJ1(qr) sin ϕq, (B5c)

where Jm(x) is the mth-order Bessel function of the first kind.
We see that the angular dependence of the tunneling matrix
elements is preserved when switching from real space to
momentum space. One may write

tX ′ (q, ϕq, z) = (−i)maX ′ (ϕq)PX ′ (q, z), (B6)

where PX ′ (q, z) is real and equal to the integral of the radial
part

PX ′ (q, z) = 2π√
SS′

∫ ∞

0
dr r fX ′ (r, z)Jm(qr), (B7)

with m = 0 for X ′ = pz, while m = 1 for X ′ = px, py.
We define the tunneling strength from graphene to a band

of the TMDC as

tb(k′ + G′) =
∑

X ′
cbX ′ (k′)tX ′ (k′ + G′), (B8)

where k′ is a vector inside the first TMDC BZ, G′ is a recipro-
cal lattice vector of the TMDC, and cbX ′ (k′) is the amplitude of
orbital X ′ in band b, the index X ′ runs over the three p orbitals
of the chalcogen atom. We derive here the form of Eq. (B8) for
the points τ (k′

j + G′
j ) of Eq. (4), with G′

1 = b′
1, G′

2 = b′
2, and

G′
3 = −b′

1 − b′
2. Using the quasimomentum conservation we

have τ (k′
j + G′

j ) = τ (Kθ + Gθ
j ) =: τKθ

j , with G1 = 0, G2 =
b2, and G3 = −b1 (see Fig. 2). We remark here that all vectors
τKθ

j have the same magnitude K . Renaming the in-plane
integral as −Px(K, z1) ≡ −Py(K, z1) ≡ t‖ and the out-of-plane
integral as Pz(K, z1) ≡ t⊥, with z1 = d⊥, we have then

tb
(
τKθ

j

) = i
[
cbx(τk′

j ) cos ϕτKθ
j
+ cby(τk′

j ) sin ϕτKθ
j

]
t‖

+ cbz(τk′
j ) t⊥, (B9)

where ϕτKθ
j

is the polar angle of τKθ
j . One may

write ϕτKθ
j
= ϕτK j + θ with ϕK1 = ϕK = 0, ϕK2 = 2π/3, and

ϕK3 = −2π/3, while ϕ−K j = ϕK j + π . We treat t‖ and t⊥
as two real parameters to be determined from experiments,
ab initio calculations, or tight-binding models.

APPENDIX C: SYMMETRY OF ORBITAL AMPLITUDES
IN A TMDC BAND

To define the tunneling strength in Eq. (B8), we have
expanded the state of an electron in band b of the TMDC as a
linear combination of single-orbital Bloch states

|b, k′〉 =
∑

X ′
cbX ′ (k′) |X ′, k′〉 . (C1)
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The properties of the coefficients cbX ′ (k′) therefore play
an important role in the form of the bilayer Hamiltonian
(6). These coefficients are constrained by the TMDC lat-
tice symmetry and the coordinate transformations of the
orbitals and of the Bloch states. We prove a useful rela-
tion focusing on cb,x(k′) and cb,y(k′), the coefficients of
orbitals px and py, respectively. For the sake of clarity
we indicate |X ′, k′〉 ≡ |ψX ′ , k′〉, where we made the or-
bital wave function ψX ′ explicit, 〈r|ψX ′ 〉 = ψX ′ (r), with
r = (x, y, z)T .

Consider two wave vectors k′ and R(α)k′ where R(α) is
a rotation of the point group of the TMDC crystal, i.e., α =
±2π/3. Following Ref. [61], we know that

|b, R(α)k′〉 = R(α) |b, k′〉
=

∑
X ′

cbX ′ (k′)R(α) |ψX ′ , k′〉 .
(C2)

For a single-orbital Bloch state |ψX ′ , k′〉, the transformation
under rotation results in a rotation of the orbital wave function

〈r|R(α)|ψX ′ , k′〉 = 〈R(−α)r|ψX ′ , k′〉 = 1√
N ′

∑
RX ′

eik′ ·RX ′ ψX ′ (R(−α)r − RX ′ )

= 1√
N ′

∑
RX ′

eik′ ·RX ′ ψX ′ (R(−α)[r − R(α)RX ′]) = 1√
N ′

∑
R̃X ′

eik′ ·R(−α)R̃X ′ [R(α)ψX ′](r − R̃X ′ )

= 1√
N ′

∑
R̃X ′

eiR(α)k′ ·R̃X ′ [R(α)ψX ′](r − R̃X ′ ) = 〈r|R(α)ψX ′ , R(α)k′〉 , (C3)

therefore,

R(α) |ψX ′ , k′〉 = |R(α)ψX ′ , R(α)k′〉 . (C4)

Due to the linear dependence of px(r) and py(r) on x and y,
respectively, we have the following transformations for ψX ′ =
px, py:

(R(α)px )(r) = px(R(−α)r) = cos α px(r) + sin α py(r),

(R(α)py)(r) = py(R(−α)r) = − sin α px(r) + cos α py(r),

(C5)

which is reflected then in the Bloch states

|R(α)px, k′〉 = cos α |px, k′〉 + sin α |py, k′〉 ,

|R(α)py, k′〉 = − sin α |px, k′〉 + cos α |py, k′〉 .
(C6)

Finally, multiplying the left- and the right-hand sides of
Eq. (C2) by 〈ψX̃ ′ , R(α)k′| and using the orthogonality between
px and py orbitals, we obtain

cb,x(R(α)k′) = cos α cb,x(k′) − sin α cb,y(k′),

cb,y(R(α)k′) = sin α cb,x(k′) + cos α cb,y(k′),
(C7)

which can be written in short form as

cb(R(α)k′) = R(α)cb(k′), (C8)

with cb(k′) = (cb,x (k′), cb,y(k′))T .
We need Eq. (C8) to prove that the band tunneling strength

in Eq. (B9) has the same value for all the three backfolded
vectors τk′

j in Eq. (4). Equation (B9) can be rewritten as

tb
(
τKθ

j

) = cb(τk′
j ) · R

(
ϕτKθ

j

)
t, (C9)

where t = (it‖, 0, t⊥). Here, we have included the pz coeffi-
cient cb,z(τk′

j ) in the vector cb(τk′
j ) and the rotation operator

R(ϕτKθ
j
) is a 3 × 3 matrix rotating only the first two compo-

nents of t while leaving the third one unchanged. We show
that tb(Kθ

2 ) = tb(Kθ
1 ) and one can obtain similar results for

Kθ
3 and for the opposite Dirac point (τ = −). We remark that

ϕKθ
2
= ϕKθ

1
+ 2π/3. Then,

tb
(
Kθ

2

) = cb(k′
2) · R

(
ϕKθ

2

)
t

= cb(R(2π/3)k′
1) · R

(
ϕKθ

1
+ 2π/3

)
t

= cb(k′
1) · R

(
ϕKθ

1

)
t = tb

(
Kθ

1

)
,

(C10)

where we have used Eq. (C8). It follows that we need to
compute the band tunneling strength only for τKθ

1 = τKθ .
Since ϕKθ = θ and ϕ−Kθ = θ + π , we can write Eq. (B9) as

tb(τKθ ) = iτ [cbx(τk′
1) cos θ + cby(τk′

1) sin θ ] t‖
+ cbz(τk′

1) t⊥. (C11)

APPENDIX D: SECOND-ORDER SCHRIEFFER-WOLFF
TRANSFORMATION

Here, we derive Eqs. (11) and (13). Following Ref. [53], the
second-order Schrieffer-Wolff matrix elements of the bilayer
Hamiltonian (6) are given by

δHgr,τ
Xs,X ′s′ =

∑
j,b,s′′

(
Tτk′

j

)
Xs,bs′′

(
T †

τk′
j

)
bs′′,X ′s′

Egr
D − ETMDC

bs′′ (τk′
j + δk)

, (D1)

where X, X ′ = A, B refer to the graphene sublattices,
s, s′, s′′ =↑,↓ are spin indices, j = 1, 2, 3, and b is the band
index. Moreover, Egr

D is the energy of the Dirac point that we
fix, without loss of generality, to Egr

D = 0, while ETMDC
bs (τk′

j +
δk) is the energy of the TMDC band b, spin index s, at the BZ
point τk′

j + δk. Using the spin-preserving property of Eq. (9),
one has that δHgr,τ

Xs,X ′s′ = 0 for s �= s′ and the elements for equal
spin are given by Eq. (10). In the following, we treat diagonal
and off-diagonal elements separately.
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Considering first the diagonal elements (X ′ = X ), we ex-
pand the numerator using Eq. (9),

δHgr,τ
Xs,Xs = −

∑
j,b

|tb(τKθ )|2
ETMDC

bs (τk′
j + δk)

. (D2)

Then, we continue by expanding the δk dependence of
ETMDC

bs (τk′
j + δk) using k · p theory [28]. For a general k′

1
point in the TMDC BZ,

ETMDC
bs (τk′

1 + δk) = Eb(k′
1) + sτ�0,b(k′

1) + [wx,b(k′
1) + sτ�1x,b(k′

1)]τδkx

+ [wy,b(k′
1) + sτ�1y,b(k′

1)]τδky + h̄2δk2
x

2mτ,s
x (k′

1)
+ h̄2δk2

y

2mτ,s
y (k′

1)
+ h̄2δkxδky

2mτ,s
xy (k′

1)
+ O(δk3), (D3)

where Eb, �0,b, wx,b, wy,b, �1x,b, �1y,b, mτ,s
x , mτ,s

y , mτ,s
xy are

material parameters for band b locally dependent on the BZ
point. They can be extracted from experiments, ab initio
calculations, or tight-binding models. In particular, Eb is
the energy of band b (ignoring SOC) with respect to the
Dirac point of graphene, �0,b is the local spin splitting,
wx,b, wy,b, �1x,b, �1y,b describe the local slope of the band,
and mτ,s

x , mτ,s
y , mτ,s

xy are the effective masses of the quadratic
dispersion. The k · p expansion close to k′

2,3 is obtained from
ETMDC

bs (τk′
1 + δk) by rotating δk according to Eq. (8). One

may write

ETMDC
bs (τk′

j + δk) = ETMDC
bs (τk′

1 + δk−ϕ j ), (D4)

with ϕ j = 0, 2π/3,−2π/3 for j = 1, 2, 3. We expand the
denominator of Eq. (D2) with Eqs. (D3) and (D4) and we
retain up to linear terms in δk,

1

ETMDC
bs (τk′

j + δk)
≈ 1

Ebsτ (k′
1)

− wbsτ (k′
1) · τδk−ϕ j

Ebsτ (k′
1)2

, (D5)

where Ebsτ (k′
1) = Eb(k′

1) + sτ�0,b(k′
1) and wbsτ (k′

1) =
(wx,b(k′

1) + sτ�1x,b(k′
1),wy,b(k′

1) + sτ�1y,b(k′
1))T . This

holds under the condition that |wbsτ (k′
1) · δk−ϕ j | � |Ebsτ (k′

1)|
and terms containing higher powers of δk are therefore
negligible. Substituting Eq. (D5) in (D2) we have

δHgr,τ
Xs,Xs = Absτ + Bbsτ,xτδkx + Bbsτ,yτδky, (D6)

which is a sum of a δk-independent part

Absτ = −3
∑

b

|tb(τKθ )|2
Ebsτ (k′

1)
, (D7)

and a δk-dependent part whose coefficients are given by

Bbsτ,ξ =
∑

b

|tb(τKθ )|2
Ebsτ (k′

1)2

∑
j

(R(ϕ j )wbsτ (k′
1))ξ (D8)

for ξ = x, y. The factor of 3 in Eq. (D7) comes from the sum
over index j. On the other hand, one can see that the sum over
j in Eq. (D8) gives zero because it is the sum of three vectors
with same magnitude that are rotated by ±2π/3. Therefore,
δHgr,τ

Xs,Xs = Absτ as reported in Eq. (11).
Now, we focus on the off-diagonal elements (X ′ �= X ) of

Eq. (D1) and we expand again the numerator using Eq. (9).
Only two independent off-diagonal elements are nonzero,
namely,

δHgr,τ
As,Bs = −

∑
j,b

|tb(τKθ )|2e−iτφ j

ETMDC
bs (τk′

j + δk)
(D9)

for s =↑,↓. The other elements are given by δHgr,τ
Bs,As =

(δHgr,τ
As,Bs)∗. Equation (D9) is similar to Eq. (D2), but it has

additional phase factors e−iτφ j . Expanding the denominator as
before, we arrive to the equivalent of Eq. (D6),

δHgr,τ
As,Bs = Aoff

bsτ + Boff
bsτ,xτδkx + Boff

bsτ,yτδky, (D10)

where

Aoff
bsτ = −

∑
j,b

|tb(τKθ )|2e−iτφ j

Ebsτ (k′
1)

(D11)

and

Boff
bsτ,ξ =

∑
b

|tb(τKθ )|2
Ebsτ (k′

1)2

∑
j

e−iτφ j (R(ϕ j )wbsτ (k′
1))ξ . (D12)

The two sets of angles φ j and ϕ j have the same values
(0, 2π/3, −2π/3 for j = 1, 2, 3), but different origins. The
angles φ j come from the tunneling matrix elements in Eq. (9)
and are connected to the C3 symmetry of graphene. Instead,
the angles ϕ j are connected to the C3 symmetry of the TMDC
crystal and they come from Eq. (D4). The sum over j in
Eq. (D11) gives zero because e−iτφ j are the complex cube
roots of the unity and sum to zero. In order to carry out the
sum over j in Eq. (D12) we compute

Boff
bsτ,x ± iBoff

bsτ,y

=
∑

b

|tb(τKθ )|2
Ebsτ (k′

1)2
wbsτ,±(k′

1)
∑

j

e−iτφ j±iϕ j , (D13)

with wbsτ,±(k′
1) = wx,b(k′

1) + sτ�1x,b(k′
1) ± i(wy,b(k′

1) +
sτ�1y,b(k′

1)). Looking at Eq. (D13), the sum
∑

j e−iτφ j+iϕ j

is equal to 3 for τ = + and it is equal to 0 for τ = −. On
the other hand,

∑
j e−iτφ j−iϕ j = 0 for τ = + and is equal

to 3 for τ = −. We conclude then that Boff
bsτ,x − iτBoff

bsτ,y = 0
and Boff

bsτ,y = −iτBoff
bsτ,x, while Boff

bsτ,x + iτBoff
bsτ,y = 2Boff

bsτ,x.
Therefore,

Boff
bsτ,x = 3

2

∑
b

|tb(τKθ )|2
Ebsτ (k′

1)2
wbsτ,τ (k′

1) (D14)

and δHgr,τ
As,Bs = Boff

bsτ,xτδkx + Boff
bsτ,yτδky = Boff

bsτ,x(τδkx − iδky)
as reported in Eq. (13).

APPENDIX E: ESTIMATION OF t‖ AND t⊥

According to Ref. [41] the value of t⊥ for bilayer graphene
is 110 meV. We expect t⊥ for graphene–TMDC bilayers to be
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of the same order of magnitude because the distance between
graphene and the closest chalcogen layer is d⊥ = 3.4 Å [35]
and happens to be equal to the distance reported between
graphene layers [3]. For further comparison and in order to
obtain the relative value of t‖, we look at DFT calculations
for graphene–TMDC heterostructures. Reference [33] reports
an induced valley Zeeman spin-orbit splitting in graphene of
−0.26 meV from the MoS2 TMDC compound. This does not
reveal immediately the values of t‖ and t⊥, but we can extract
information about them using Eq. (12). Substituting Eq. (5) in
Eq. (12), we expand the dependence of |tb|2 in t‖ and t⊥:

λVZ = αt2
‖ + βt2

⊥ + 2γ t‖t⊥, (E1)

where

α = 3
∑

b

α̃�0,b(k′
1)

E2
b (k′

1) − �2
0,b(k′

1)
,

β = 3
∑

b

β̃�0,b(k′
1)

E2
b (k′

1) − �2
0,b(k′

1)
, (E2)

γ = 3
∑

b

γ̃ �0,b(k′
1)

E2
b (k′

1) − �2
0,b(k′

1)

and

α̃ = |cbx(τk′
1) cos θ + cby(τk′

1) sin θ |2,
β̃ = |cbz(τk′

1)|2, (E3)

γ̃ = −Im{[cbx(τk′
1) cos θ + cby(τk′

1) sin θ ]c∗
bz(τk′

1)}.
We see that α, β, and γ depend on the orbital amplitudes
cb,x,y,z(τk′

1), the band dispersion Eb(k′
1), and the spin splitting

�0,b(k′
1) which are intrinsic properties of the isolated TMDC

layer and therefore can be readily calculated using the TB
model of Ref. [50]. The only missing external parameter is
the value of fG which defines the distance of Eb(k′

1) from the
Dirac point. From Ref. [33], the Dirac point is very close to the
conduction band of the TMDC and we set fG = 0.95, meaning
that the Dirac point of graphene has an energy distance from
the TMDC conduction band edge equal to 5% of the TMDC
band gap. We plug the resulting α, β, γ and the value of
λVZ = −0.26 meV in Eq. (E1) and the solutions for t‖ and
t⊥ form an ellipse in the (t‖, t⊥) plane (see Fig. 6). This
ellipse is elongated and inclined by an angle of ∼ − 40◦. In
principle, all the points (t‖, t⊥) on this ellipse give λVZ =
−0.26 meV, but some values are unphysically large. Zooming
closely to the center [see Fig. 6(b)], the ellipse touches the
point (t‖, t⊥) = (100, 100) meV. Since this is the order of
magnitude that we expect, we estimate t‖ ≈ t⊥ ≈ 100 meV.

As presented at the end of Sec. VII, the results we obtain
with these estimated values are in good qualitative agreement
with previous works using DFT calculations [33] or TB
models [40]. Nevertheless, it is possible that t‖ and t⊥ are
overestimated. With the upper chalcogen layer approximation
we have neglected the contribution coming from the d orbitals
in order to simplify the treatment of the interlayer tunneling.
In case the contribution of the d orbitals is significant, then
t‖ and t⊥ would have a lower absolute value and the valley
Zeeman SOC strength at zero twist angle, λVZ = −0.26 meV,
would be matched by additional radial integrals [see Eq. (B7)]

FIG. 6. Estimation of t‖ and t⊥. (a) The blue ellipse indicates the
possible values of t‖ and t⊥ that give a valley Zeeman spin-orbit
strength of −0.26 meV at θ = 0◦ for a corresponding value of
fG = 0.95. (b) Magnification of (a). The red rectangle indicates the
window of values where |t‖|, |t⊥| � 100 meV.

associated with the d orbitals. Thus, further research is needed
to determine how relevant are the d orbitals in the interlayer
tunneling.

APPENDIX F: RASHBA TYPE INDUCED SPIN-ORBIT
COUPLING

In this Appendix we will show that the induced Rashba
type SOC in graphene can be understood by taking into
account spin-flip processes between even (e) and odd (o)
bands of the TMDC. The energy bands of monolayer TMDCs
can be classified as e or o under σh, which is the reflection
with respect to the horizontal mirror plane of the TMDC.

Consider the following term in the effective low-energy
Hamiltonian of graphene that can be obtained in third-order
perturbation theory [53]:(

δHgr,τ
R

)
Xs,X ′s′

=
∑

j,b,b′,s′′,s′′′

(
Tτk′

j

)
Xs,bs′′ (Hsoc)bs′′,b′s′′′

(
T †

τk′
j

)
b′s′′′,X ′s′[

Egr
D − ETMDC

b (τk′
j )
][

Egr
D − ETMDC

b′ (τk′
j )
] .

(F1)

Here, b �= b′ are band indices, and in the denominator we
have neglected the dependence of the TMDC band energies
ETMDC

b (τk′
j ) on the intrinsic SOC [cf. Eq. (10)] because it

would lead to higher-order effects. Here, (Hsoc)bs′′,b′s′′′ are
matrix elements of the SOC operator

Ĥsoc = γd L̂ · Ŝ = γd
(
L̂zŜz + 1

2 (L̂+Ŝ− + L̂−Ŝ+)
)
, (F2)

which are nonzero only between e and o bands of the TMDC.
Moreover, γd is the atomic SOC strength of the metal atoms’
d orbitals, L̂± = L̂x ± iL̂y, L̂z are angular momentum opera-
tors, and Ŝ = (Ŝx, Ŝy, Ŝz )T , Ŝ± = Ŝx ± iŜy are spin operators,
i.e., Ŝ = (h̄/2)s, where s = (sx, sy, sz )T are Pauli matrices. In
order to show that Eq. (F1) describes Rashba type induced
SOC, we focus, as a first step, on the matrix element between
an even (b = e) and an odd (b′ = o) band. At a general point

085412-12



INDUCED SPIN-ORBIT COUPLING IN TWISTED … PHYSICAL REVIEW B 100, 085412 (2019)

TABLE I. Matrix elements of the SOC operator in the basis of
{dx2−y2 , dxy, dz2 , dxz, dyz} atomic orbitals.

Orbital dxz dyz

dz2 −i
√

3Ŝy i
√

3Ŝx

dxy −iŜx iŜy

dx2−y2 iŜy iŜx

k′ of the BZ the Bloch wave function of these bands can be
written as

|e, k′〉 = ce,x2−y2 (k′) |dx2−y2 , k′〉 + ce,xy(k′) |dxy, k′〉
+ ce,z2 (k′) |dz2 , k′〉 , (F3a)

|o, k′〉 = co,xz(k′) |dxz, k′〉 + co,yz(k′) |dyz, k′〉 , (F3b)

where |dμ, k′〉 are the usual Bloch wave functions formed
using the d atomic orbitals of the metal atoms, μ ∈ {x2 −
y2, xy, z2, xz, yz}, and ce (o),μ(k′) are complex amplitudes giv-
ing the weight of each type of atomic orbital at a given
momentum space point. Other Bloch wave functions formed
from the atomic orbitals {pz, px, py} of the chalcogen atoms
have also finite weight in |e (o), k′〉 and, as argued in pre-
vious sections, they are crucial to understand band-to-band

tunneling. However, they are less important in the calculation
of interband SOC matrix elements and therefore we do not
take them into account explicitly in Eq. (F3). The interband
spin matrices of Ĥsoc between these e and o bands can be
written as

[Hsoc(k′)]e,o = 〈e, k′| Ĥsoc |o, k′〉
= iγd

[
α(x)

e,o(k′)Ŝx + α(y)
e,o(k′)Ŝy

]
, (F4)

where α(x)
e,o = (ce,x2−y2 )∗co,yz − (ce,xy)∗co,xz + √

3(ce,z2 )∗co,yz

and α
(y)
e,o = (ce,x2−y2 )∗co,xz + (ce,xy)∗co,yz − √

3(ce,z2 )∗co,xz (for
simplicity, we have suppressed the dependence of α

(x,y)
e,o on

k′, which will be restored later). Equation (F4) can be easily
obtained by taking into account Table I. Note that (Hsoc)e,o

in Eq. (F4) has only off-diagonal nonzero elements in spin
space ↑, ↓, i.e., it describes spin-flip processes between the
two bands. The term that would be ∼Ŝz vanishes between e
and o bands by symmetry.

As one can see from Eq. (F1), one needs to calculate
(Hsoc)es′′,os′′′ at the three k′

j BZ points of the TMDC defined
in Eq. (4) that satisfy the quasimomentum conservation for
interlayer tunneling. These points are related to each other
by a 2π/3 rotation. Following Ref. [61], we may write
|e (o), R±2π/3k′

1〉 = R±2π/3 |e (o), k′
1〉, where R±2π/3 denotes

rotation by ±2π/3. Therefore, given 〈e, k′
1| Ĥsoc |o, k′

1〉, one
needs to evaluate

〈e, R2π/3k′
1| Ĥsoc |o, R2π/3k′

1〉 = 〈e, k′
1| (R2π/3)† Ĥsoc R2π/3 |o, k′

1〉 , (F5a)

〈e, R−2π/3k′
1| Ĥsoc |o, R−2π/3k′

1〉 = 〈e, k′
1| (R−2π/3)† Ĥsoc R−2π/3 |o, k′

1〉 . (F5b)

This means that the necessary matrix elements can be
calculated using |e, k′

1〉 and |o, k′
1〉 and a rotated Ĥsoc. The

transformed operators (R±2π/3)†ĤsocR±2π/3 can be easily cal-
culated by noticing that

(R±2π/3)† L̂z R±2π/3 = L̂z, (F6a)

R2π/3 L̂± (R2π/3)† = e∓i2π/3L̂±, (F6b)

R−2π/3 L̂± (R−2π/3)† = e±i2π/3L̂±. (F6c)

Let us define the vectors ne,o(k′
1) = (α(x)

e,o(k′
1), α(y)

e,o(k′
1))T ,

S = (Sx, Sy)T . Then, one finds that

[Hsoc(k′
1)]e,o = iγd ne,o(k′

1) · S, (F7a)

[Hsoc(R2π/3k′
1)]e,o = iγd (R2π/3ne,o(k′

1)) · S, (F7b)

[Hsoc(R−2π/3k′
1)]e,o = iγd (R−2π/3ne,o(k′

1)) · S. (F7c)

Note that ne,o(k′
1) in Eqs. (F7) is in general a complex

vector because the weights ce (o),μ(k′
1) of the atomic orbitals

in band e (o) can be complex.
We can compute now the contribution to δHgr,τ

R from
the interaction of two bands of the TMDC (e.g., the con-
duction band which is e and the first o band above the
conduction band). Then, the indices b and b′ in Eq. (F1)
can take the values (b, b′) = (e, o) and (b, b′) = (o, e). For
simplicity, we focus on the Dirac point K, i.e., τ = 1. Note
that the energy differences [Egr

D − ETMDC
b (k′

j )] and [Egr
D −

ETMDC
b′ (k′

j )] appearing in Eq. (F1) are equal for all k′
j

because of the threefold rotational (C3) symmetry of the
TMDC. Therefore, the corresponding factor can be pulled
out of the sum in Eq. (F1). Using Eq. (9) one may write
explicitly

δHgr
R = 1[

Egr
D − ETMDC

e (k′
1)

][
Egr

D − ETMDC
o (k′

1)
][(

1 1
1 1

)
⊗ [Te,o[Hsoc(k′

1)]e,o + To,e[Hsoc(k′
1)]o,e]

+
(

1 e−2iπ/3

e2iπ/3 1

)
⊗ [Te,o[Hsoc(R2π/3k′

1)]e,o + To,e[Hsoc(R2π/3k′
1)]o,e]

+
(

1 e2iπ/3

e−2iπ/3 1

)
⊗ [Te,o[Hsoc(R−2π/3k′

1)]e,o + To,e[Hsoc(R−2π/3k′
1)]o,e]

]
. (F8)
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Here, Te,o = te(Kθ )t∗
o (Kθ ) where tb(Kθ ) is given in Eq. (5), To,e = T ∗

e,o, and [Hsoc(k′)]o,e = [Hsoc(k′)]†
e,o. Let us write Te,o =

|Te,o|eiη, then using Eqs. (F7)

Te,o[Hsoc(k′
1)]e,o + T ∗

e,o[Hsoc(k′
1)]†

e,o = iγd |Te,o|[eiηne,o(k′
1) − e−iη(ne,o)∗(k′

1)] · S

= −2γd |Te,o|(Im[eiηne,o(k′
1)]) · S

= 2iγd |Te,o|
(

0 �2(k′
1)

�1(k′
1) 0

)
, (F9a)

Te,o[Hsoc(R2π/3k′
1)]e,o + T ∗

e,o[Hsoc(R2π/3k′
1)]†

e,o = −2γd |Te,o|(R2π/3 Im[eiηne,o(k′
1)]) · S

= 2iγd |Te,o|
(

0 e−2iπ/3�2(k′
1)

e2iπ/3�1(k′
1) 0

)
, (F9b)

Te,o[Hsoc(R−2π/3k′
1)]e,o + T ∗

e,o[Hsoc(R−2π/3k′
1)]†

e,o = −2γd |Te,o|(R−2π/3 Im[eiηne,o(k′
1)]) · S

= 2iγd |Te,o|
(

0 e2iπ/3�2(k′
1)

e−2iπ/3�1(k′
1) 0

)
. (F9c)

Here, �1(k′
1) = −Im[eiηα

(y)
e,o(k′

1)] + i Im[eiηα(x)
e,o(k′

1)] and �2(k′
1) = Im[eiηα

(y)
e,o(k′

1)] + i Im[eiηα(x)
e,o(k′

1)]. Note that one can
write �1(k′

1) = |�1(k′
1)|eiϑ (k′

1 ) and �2(k′
1) = −|�1(k′

1)|e−iϑ (k′
1 ) where ϑ (k′

1) = Arg[�1(k′
1)]. Substituting now Eqs. (F9) into

Eq. (F8) one finds

δHgr
R =

⎛⎜⎜⎝
0 0 0 0
0 0 iλR(k′

1)eiϑ (k′
1 ) 0

0 −iλR(k′
1)e−iϑ (k′

1 ) 0 0
0 0 0 0

⎞⎟⎟⎠, (F10)

where

λR(k′
1) = 6γd |Te,o(k′

1)||�1(k′
1)|[

Egr
D − ETMDC

e (k′
1)

][
Egr

D − ETMDC
o (k′

1)
] . (F11)

Equation (F11) is the strength of the Rashba type SOC induced in graphene by each pair of e and o bands. As Eq. (F1) shows, in
order to calculate the total spin-orbit coupling λR(k′

1) one needs to sum up the contributions coming from all pairs of even and
odd bands with the correct phase factors shown in Eq. (F10). A similar result to Eq. (F10) can be obtained in an analogous way
for the opposite Dirac point −K.
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