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1 2DEG

1.1 Experimental facts in a 2DEG

A 2DEG (2 dimensional electron gas) is builded mostly in a MOS structure (metall(Al)
oxide(SiO2) semiconductor(Al)). By adding a gate voltage VG between the metall and the
semiconductor a thin layer of quasi free electrons is builded between the semiconductor and
the insulator (=oxide). The gate voltage forces the conduction band of the semicondutor
to bend down towards the insulator, so that it very far to the insulator under the level
of the fermi energy. Because of this there exists some electron states which now can be
occupied and the 2DEG is builded. The thickness of this layer is only about 5-10 nm, so
we ca treat it as a two dimensional system. The wavelength of these electrons is much
larger than the lattice constant of the semiconductor so that the periodic potential can
be averaged an the electrons can be treated as quasi-free.

For measurments a corrent is generated through the 2DEG (x-y-plane) in x-direction
and a magnetic field penetrates the 2DEG perpendicular to the current. We measure
the resistivity and the conductivity in x- and y-direction. We call the conductivity in
x-direction the diagonal conductivity σxx, and in y-direction the Hall conductivity σxy.

1.2 Quantum Hall Effect in a 2DEG

In the 2DEG a quasi-free electron is described by the Schrödinger equation. When a
magnetic field described by a vector potential ~A = (−By,0) is added to the system, we
introduce the canonical momentum π, which replaces the momentum operator in the
Schrödinger equation.

~p→ ~π = ~p− −e
c
~A(~r) (1)

1

2me

~π2ψ(~r) = Eψ(~r) (2)

At this point we define two variables to shorten all the following calculations, the magnetic
length lB and the cyclotron frequency ωc:

lB =

√
~c
eB

(3)

ωc =
eB

me

(4)
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Next we define the two operators a,a† to show that it is possible to write the Hamilton
operator in a magnetic field isomorphic to the one which describes a harmonic oszillator:

a =
1√
2

lB
~

(πx − iπy) (5)

a† =
1√
2

lB
~

(πx + iπy) (6)

Because these operators should be ladder operators, they gained their form by fulfilling
the condition that [a,a†] = 1. So now we can write the eigenvalue equation in the form of
a harmonic oszillator:

~ωc
(
a†a+

1

2

)
ψ(~r) = Eψ(~r) (7)

a†a is a number operator, hence we gain the eigenenergies of the electrons in a 2DEG:

En = ~ωc
(
n+

1

2

)
(8)

These discrete energy levels are called Landau levels. Here it is important to remark that
the lowest Landau level has the energy 1

2
~ωc, it is not zero! Without a magnetic field the

energy was given by E = ~2k2

2me
, so that we can see that in a magnetic field the energy

becomes independent from k. The number of states will not change when a magnetic field
is switched on, so there has to be a high degeneracy in each Landau level. To calculate the
degeneracy imagine that an electron moves in a cycle in the magnetic field and so every
electron needs some space. The radius of this circle is then given by lB. The degeneracy
NS of each Landau level is then the ratio between the size of the sample A and the area
each e− circle needs

NS =
A

2πl2B
=

Φ

Φ0

(9)

where Φ0 is the flux quantum and is given by Φ0 = hc/e.
In a perfect sample the energy levels would be discrete as desribed above. But in a

real sample this is not correct because of disorder (impurities, edge states,...), so the
Landau levels will broaden and a separation in localized an extended states will occur.
Only the extended states will contribute to the current in diagonal and Hall direction, the
localized states are bound to the places of disorder and therefore can’t move. The graphic

shows the difference between an ideal sample and a real sample. The distance between
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two Landau levels is ~ωc and so it can be changed by changing the magnetic field. By
increasing the magnetic field the Landau levels will cross the Fermi energy at some time.
It is also possible to increase the density of electrons by increasing the gate voltage. Hence
the Fermi energy also crosses at a special point the Landau levels.

Is the Fermi energy in an area of localized states and is changed relatively to the
Landau levels by changing the magnetic field or the gate voltage, the conductivity in
diagonal direction will not change because the number of the electrons contributing to
the current does not change. New incoming electrons into the sample then only will occupy
localized states and the conductivity σxx is zero. The Hall conductivity σxy then has a
plateau while only localized states will become occupied, no new electrons will contribute
to the current in y-direction. Indeed when the Fermi energy lies in an area of extended
states and its position is changed, the number of occupied extended states does change.
The diagonal conductivity then has a value which is not zero because the electrons can
use unoccupied states in the Landau level to move. Because of the changing number of
occupied extended states the Hall conductivity σxy does change.
→ Hence in a diagram where the Hall conductivity is printed depending on the magnetic
field, plateaus will occur while the Fermi energy is in an area of localized states.

Abbildung 1: Hall conductivity σxy in a 2DEG, B in arbitrary units
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2 QHE in graphene

For graphene we need an other definition of ωc:

ωc =
√

2
vF
lB

(10)

This definition comes out of dimensional analysis. For describing the electrons in graphene
we need the Dirac equation because of the linear disperion at the two Dirac points:

vF ~(σ · ~p)ψ(~r) = Eψ(~r) (11)

When a megnetic field is added perpendicular to the graphene plane, the momentum
operator has to be replaced as described in equation (1) and we obtain:

− vF
(
σx

(
i∂x −

e

c
(−By)

)
+ iσy∂y

)
ψ(~r) = Eψ(~r) (12)

The movement of the electrons in x-direction is not influenced by the magnetic field so
they move like free electrons in this direction and we can separate the electron wave
function in x- and y-direction with a free wave funtion in x-direction:

ψ(x,y) = eikxφ(y) (13)

By defining ξ = y/lB − lBk and using the definition of ωc we obtain the hamilton (15)
operator for the eigenvalue equation (14):

Ĥφ(ξ) = −E
√

2

ωc
φ(ξ) (14)

Ĥ =

(
0 ξ + ∂ξ

ξ − ∂ξ 0

)
(15)

This hamilton operator looks like it can be written with to operators O,O† for ξ ± ∂ξ.
These two operators shall fulfil the commutator relation of ladder operators [O,O†] = 1
and therefore the operators look like

O =
1√
2

(ξ + ∂ξ), O† =
1√
2

(ξ − ∂ξ) (16)

So we have the following eigenvalue equation:(
0 O
O† 0

)
φ(ξ) = −E

ωc
φ(ξ) (17)

where φ(ξ) is a 2 component vector φ(ξ) = (φA(ξ),φB(ξ))T for the two sublattices A and
B. For a h.o.-like hamilton operator we need the product O†O and therefore we write the
eigenvalue equation for H2 and we will obtain the following hamilton operator

Ĥ2 = ω2
c

[(
1 0
0 0

)
+O†O

(
1 0
0 1

)]
(18)

The upper line in here describes the sublattice A and the lower line the sublattice B. The
fact that O†O is a number operator makes it easy to calculate the eigenenergies for the
two sublattices.

E2 = (~ωc)2 · (m+ 1) m = 0,1,2,... (19)

E2 = (~ωc)2 · n n = 0,1,2,... (20)
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The two sublattices have the same energy and hence the two quantum numbers n,m are
not independent and we set m = n− 1. At this point every solution of the electron wave
function can be written as a two component vector for the two sublattices where each
component is a solution ψ(ξ) of a harmonic oszillator.

φN,∓(ξ) =

(
ψN−1(ξ)
∓ψN(ξ)

)
(21)

For n = 0 exists a zero energy solution, because the energy is given in eq. (19) by
E = ~ωc

√
n. The eigenvalue equation then is written as

(
0 O
O† 0

)(
φA(ξ)
φB(ξ)

)
= 0 (22)

and the two conditions in (23) have to be fulfilled for the zero energy state. Therefore φB
has to be the lowest level solution of the h.o. for n=0 and φA has to be zero!

OφB(ξ) = 0 O†φA(ξ) = 0 (23)

With this the zero energy solution is given by

φ0(ξ) =

(
0

ψB,n=0(ξ)

)
(24)

This zero energy solution described here is very important for the understanding of the
anomalous quantum Hall effect in graphene!

2.1 Explaining the QHE in graphene by a Gedankenexperiment

Imagine we would have a cylinder made of graphene (carbon nano tube) where the current
is running in a circle on the surface of the cylinder (x-direction) and an external magnetic
field, always perpendicular to the surface of the cylinder, is added. The Lorentz force
causes a Hal voltage parallel to the middle axis of the cylinder (y-direction). The circling
current generates a megnetic flux in y-direction. If the flux can be changed, i.e. with

!Jiang, Henriksen, Tung, et al., 2007", and to scanning
tunneling spectroscopy !Li and Andrei, 2007" !STS" on a
graphite surface.

J. The anomalous integer quantum Hall effect

In the presence of disorder, Landau levels get broad-
ened and mobility edges appear !Laughlin, 1981". Note
that there will be a Landau level at zero energy that
separates states with hole character !!"0" from states
with electron character !!#0". The components of the
resistivity and conductivity tensors are given by

$xx =
%xx

%xx
2 + %xy

2 ,

$xy =
%xy

%xx
2 + %xy

2 , !109"

where %xx !$xx" is the longitudinal component and %xy
!$xy" is the Hall component of the conductivity !resistiv-
ity". When the chemical potential is inside a region of
localized states, the longitudinal conductivity vanishes,
%xx=0, and hence $xx=0, $xy=1/%xy. On the other hand,
when the chemical potential is in a region of delocalized
states, when the chemical potential is crossing a Landau
level, we have %xx!0 and %xy varies continuously !Sheng
et al., 2006, 2007".

The value of %xy in the region of localized states can
be obtained from Laughlin’s gauge invariance argument
!Laughlin, 1981": one imagines making a graphene rib-
bon such as shown in Fig. 19 with a magnetic field B
normal through its surface and a current I circling its
loop. Due to the Lorentz force, the magnetic field pro-
duces a Hall voltage VH perpendicular to the field and
current. The circulating current generates a magnetic
flux & that threads the loop. The current is given by

I = c
'E
'&

, !110"

where E is the total energy of the system. The localized
states do not respond to changes in &, only the delocal-
ized ones. When the flux is changed by a flux quantum
'&=&0=hc /e, the extended states remain the same by

gauge invariance. If the chemical potential is in the re-
gion of localized states, all the extended states below the
chemical potential will be filled both before and after
the change of flux by &0. However, during the change of
flux, an integer number of states enter the cylinder at
one edge and leave at the opposite edge.

The question is: How many occupied states are trans-
ferred between edges? We consider a naive and, as
shown further, incorrect calculation in order to show the
importance of the zero mode in this problem. Each Lan-
dau level contributes with one state times its degeneracy
g. In the case of graphene, we have g=4 since there are
two spin states and two Dirac cones. Hence, we expect
that when the flux changes by one flux quantum, the
change in energy would be 'Einc= ±4NeVH, where N is
an integer. The plus sign applies to electron states
!charge +e" and the minus sign to hole states !charge −e".
Hence, we conclude that Iinc= ±4!e2 /h"VH and hence
%xy,inc=I /VH= ±4Ne2 /h, which is the naive expectation.
The problem with this result is that when the chemical
potential is exactly at half filling, that is, at the Dirac
point, it would predict a Hall plateau at N=0 with
%xy,inc=0, which is not possible since there is an N=0
Landau level, with extended states at this energy. The
solution for this paradox is rather simple: because of the
presence of the zero mode that is shared by the two
Dirac points, there are exactly 2( !2N+1" occupied
states that are transferred from one edge to another.
Hence, the change in energy is 'E= ±2!2N+1"eVH for a
change of flux of '&=hc /e. Therefore, the Hall conduc-
tivity is !Schakel, 1991; Gusynin and Sharapov, 2005;
Herbut, 2007; Peres, Guinea, and Castro Neto, 2006a,
2006b"

%xy =
I

VH
=

c
VH

'E
'&

= ± 2!2N + 1"
e2

h
, !111"

without any Hall plateau at N=0. This result has been
observed experimentally !Novoselov, Geim, Morozov, et
al., 2005; Zhang et al., 2005" as shown in Fig. 20.

K. Tight-binding model in a magnetic field

In the tight-binding approximation, the hopping inte-
grals are replaced by a Peierls substitution,

eie#R
R!A·drtR,R! = ei!2)/&0"#R

R!A·drtR,R!, !112"

where tR,R! represents the hopping integral between the
sites R and R!, with no field present. The tight-binding
Hamiltonian for a single graphene layer, in a constant
magnetic field perpendicular to the plane, is conve-
niently written as

H = − t $
m,n,%

%ei)!&/&0"n%!1+z"/2&a%
†!m,n"b%!m,n"

+ e−i)!&/&0"na%
†!m,n"b%„m − 1,n − !1 − z"/2…

+ ei)!&/&0"n%!z−1"/2&a%
†!m,n"b%!m,n − z" + H.c.& ,

!113"

FIG. 19. !Color online" Geometry of Laughlin’s thought ex-
periment with a graphene ribbon: a magnetic field B is applied
normal to the surface of the ribbon; a current I circles the loop,
generating a Hall voltage VH and a magnetic flux &.
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a solenoid on the middle of the cylinder, only the extended states in the cylinder will
be influenced by this change in external flux. The external flux shall not influence the
magnetic field. For the extended states the following condition has to be fulfilled:

φ(x+ 2πR,y) = φ(x,y) (25)
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Because of gauge invariance only the phase of the vector potential ~A will change, hence
the flux only can change by a flux quantum Φ0 times an integer n:

∆Φ = n · hc
e

(26)

By changing the flux in the solenoid an integer number of states will enter the cylinder
and leave it on the other side. Here we have nearly the same argumentation than in the
2DEG: When the Fermi energy is in an area of localized states, the change of flux will
not cause a change in Hall conductivity because the number of occupied extended states
remains the same.
Now we want to calculate the number of states which are entering/leaving the cylinder,
when the external flux is changed by a flux quantum Φ0. Therefore we describe the current
in the cylinder by

I = c
δE

δΦ
(27)

where E is the total energy in the system. Each Landau level contributes to the energy
of the current by on states times its degeneracy g. For graphene g = 4 because of the two
spin states times the two Dirac points. So the change of energy in the system is given by
(N: # occupied Landau levels; eVH : energy each electron has in y-direction)

δE = ±4NeVH (28)

Hence the change in current is δI = eNe2VH/h and the Hall conductivity can be calcula-
ted:

σxy =
I

VH
= 4N

e2

h
(29)

This equation is nearly the same than for a 2DEG (there only would be a factor of 2
because of the missing degeneracy from the Dirac points) and would predict a plateau
for N = 0 and therefore for the zero energy state. But this is not possible as discussed
before: Graphene has a zero energy Landau level and hence the conductivity is changing
when the Fermi energy moves relatively to the Landau levels. The problem is that the
zero energy state has only half the degeneracy than all the other states (see eq. (24)). The
degeneracy then can be written as 4N + 2 to fulfil these conditions.

σxy = 2
e2

h
(2N + 1) (30)

In measured data this looks then like a shift of ±1/2 and really was measured in 2005 by
Novoselov, Geim, Morosov, et al. and is shown in figure 2.
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Abbildung 2: anomalous Quantum Hall Effect in graphene
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