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A colloquium-style introduction to two electronic processes in a carbon monolayer �graphene� is
presented, each having an analog in relativistic quantum mechanics. Both processes couple
electronlike and holelike states, through the action of either a superconducting pair potential or an
electrostatic potential. The first process, Andreev reflection, is the electron-to-hole conversion at the
interface with a superconductor. The second process, Klein tunneling, is the tunneling through a p-n
junction. The absence of backscattering, characteristic of massless Dirac fermions, implies that both
processes happen with unit efficiency at normal incidence. Away from normal incidence,
retro-reflection in the first process corresponds to negative refraction in the second process. In the
quantum Hall effect, both Andreev reflection and Klein tunneling induce the same dependence of the
two-terminal conductance plateau on the valley isospin of the carriers. Existing and proposed
experiments on Josephson junctions and bipolar junctions in graphene are discussed from a unified
perspective.
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I. INTRODUCTION

In October 1920, the inventor of special relativity, Al-
bert Einstein, traveled to Leiden to meet with the dis-
coverer of superconductivity, Heike Kamerlingh Onnes.
A photograph of a blackboard �Fig. 1� records one of
their discussions. The two physicists had much to dis-
cuss, but they would have found little common ground
in the two topics closest to their hearts, since supercon-
ductivity is essentially a nonrelativistic phenomenon.

Relativistic contributions to the superconducting pair
potential, studied by Capelle and Gross �1995, 1999a,
1999b�, are a small correction of order �vF /c�2 �Fermi
velocity over speed of light squared�. Fully relativistic
phenomena such as particle-to-antiparticle conversion
by a superconductor have remained pure fiction. Some
of this fiction is now becoming science in a material first
isolated a few years ago by Andre Geim and his group at
Manchester University �Novoselov et al., 2004�.

The material, called graphene, is a monatomic layer of
carbon atoms arranged on a honeycomb lattice. Upon
doping, electrons and holes move through the layer with
a velocity v=106 m/s, which is only a small fraction of
the speed of light. And yet, this velocity is energy
independent—as if the electrons and holes were mass-
less particles and antiparticles moving at the speed of
light. As demonstrated in transport measurements by
Novoselov et al. �2005� and Zhang et al. �2005�, and in

FIG. 1. Albert Einstein, Paul Ehrenfest, Paul Langevin, Heike
Kamerlingh Onnes, and Pierre Weiss at a workshop in Leiden
�October 1920�. The blackboard discussion, on the Hall effect
in superconductors, has been reconstructed by Sauer �2007�.
See also Van Delft �2006� for the historical context of this
meeting.
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spectroscopic measurements by Zhou et al. �2006� and
Bostwick et al. �2007�, the electronic properties of
graphene are described by an equation �the Dirac equa-
tion� of relativistic quantum mechanics, even though the
microscopic Hamiltonian of carbon atoms is nonrelativ-
istic. While graphene itself is not superconducting, it ac-
quires superconducting properties by proximity to a su-
perconductor. We therefore have the unique possibility
to bridge the gap between relativity and superconductiv-
ity in a real material.

For example, Fig. 2 shows two superconducting elec-
trodes on top of a carbon monolayer. The supercurrent
measured through this device by Heersche et al. �2007� is
carried by massless electrons and holes, converted into
each other by the superconducting pair potential. This
conversion process, known as Andreev reflection �An-
dreev, 1964�, is described by a superconducting variant
of the Dirac equation �Beenakker, 2006�.

In this Colloquium, we review the unusual physics of
Andreev reflection in graphene. For a broader perspec-
tive, we compare and contrast this coupling of electrons
and holes by a superconducting pair potential with the
coupling of electrons and holes by an electrostatic po-
tential. The latter phenomenon is called Klein tunneling
�Cheianov and Fal’ko, 2006; Katsnelson, et al., 2006�
with reference to relativistic quantum mechanics, where
it represents the tunneling of a particle into the Dirac
sea of antiparticles �Klein, 1929�. Klein tunneling in
graphene is the tunneling of an electron from the con-
duction band into hole states from the valence band
�which plays the role of the Dirac sea�.

The two phenomena, Andreev reflection and Klein
tunneling, are introduced in Secs. III and IV, respec-
tively, and then compared in Sec. V. But first we summa-
rize, in Sec. II, the special properties of graphene that
govern these two phenomena. More comprehensive re-
views of graphene have been written by Castro Neto et
al. �2006, 2007�, Geim and Novoselov �2007�, Gusynin et
al. �2007�, Katsnelson �2007�, and Katsnelson and No-
voselov �2007�.

II. BASIC PHYSICS OF GRAPHENE

A. Dirac equation

The unusual band structure of a single layer of graph-
ite, shown in Fig. 3, has been known for 60 years �Wal-

lace, 1947�. Near each corner of the hexagonal first Bril-
louin zone, the energy E has a conical dependence on
the two-dimensional wave vector k= �kx ,ky�. Denoting
by �k=k−K the displacement from the corner at wave
vector K, one has for �ka�1 the dispersion relation

�E� = �v��k� . �1�

The velocity v� 1
2
�3�a /��106 m/s is proportional to

the lattice constant a=0.246 nm and to the nearest-
neighbor hopping energy ��3 eV on the honeycomb
lattice of carbon atoms �shown in Fig. 4�.

The linear dispersion relation �1� implies an energy-
independent group velocity vgroup��E /��k=v of low-
energy excitations �E���. These electron excitations
�filled states in the conduction band� or hole excitations
�empty states in the valence band�, therefore, have zero
effective mass. DiVincenzo and Mele �1984� and Se-
menoff �1984� noticed that—even though v�c—such
massless excitations are governed by a wave equation,
the Dirac equation, of relativistic quantum mechanics,

− i�v� 0 �x − i�y

�x + i�y 0
���A

�B
� = E��A

�B
� . �2�

	The derivation of this equation for a carbon monolayer
goes back to McClure �1956�.


The two components �A and �B give the amplitude
�A�r�eiK·r and �B�r�eiK·r of the wave function on the A
and B sublattices of the honeycomb lattice �see Fig. 4�.
The differential operator couples �A to �B but not to
itself, in view of the fact that nearest-neighbor hopping

FIG. 2. �Color online� Atomic force microscope image �false
color� of a carbon monolayer covered by two superconducting
Al electrodes. From Heersche et al., 2007.

FIG. 3. �Color online� Band structure E�kx ,ky� of a carbon
monolayer. The hexagonal first Brillouin zone is indicated. The
conduction band �E�0� and the valence band �E	0� form
conically shaped valleys that touch at the six corners of the
Brillouin zone �called conical points, Dirac points, or K
points�. The three corners marked by a white dot are con-
nected by reciprocal-lattice vectors, so they are equivalent.
Likewise, the three corners marked by a black dot are equiva-
lent. In undoped grapheme, the Fermi level passes through the
Dirac points. Illustration by C. Jozsa and B. J. van Wees.
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on the honeycomb lattice couples only A sites with B
sites,1

E
A = � �
neighbors


B, E
B = � �
neighbors


A. �3�

In a more concise notation, Eq. �2� may be written as

vp · �
 = E
 , �4�

with p=−i��� /�x ,� /�y� the momentum operator in the
x-y plane and �= ��x ,�y ,�z� the vector of Pauli matrices
acting on the spinor 
= ��A ,�B�. �For later use, we de-
fine �0 as the 2�2 unit matrix.� The spin degree of free-
dom described by the Pauli matrices �i is called the
“pseudospin,” to distinguish it from the real electron
spin.

This two-dimensional Dirac equation describes states
with wave vector k in the valley centered at the corner
of the Brillouin zone with wave vector K= �4 /3a�x̂. The
valley at the opposite corner at −K produces an inde-
pendent set of states with amplitudes �A� �r�e−iK·r and
�B� �r�e−iK·r on the A and B sublattices. The two compo-
nents �A� and �B� satisfy the same Dirac equation �4�
with px→−px. The spinor �= ��A ,�B ,−�B� ,�A� � con-
taining both valleys, therefore, satisfies the four-
dimensional Dirac equation,2

�vp · � 0

0 vp · �
�� = E� . �5�

This differential equation represents the low-energy and
long-wavelength limit of the difference equation �3� in
the tight-binding model of graphene.

For a compact notation, we make use of a second set
of Pauli matrices �= ��x ,�y ,�z�, with �0 the 2�2 unit ma-
trix, acting on the valley degree of freedom �while � and
�0 act on the sublattice degree of freedom�. Equation �5�
may then be written as

H�A�� = E� , �6a�

H�A� = v	�p + eA� · �
 � �0 + U�0 � �0, �6b�

where for generality we have also included external
electromagnetic fields �with scalar potential U and vec-
tor potential A�. Electromagnetic fields do not couple
the two valleys, provided that the fields vary smoothly
on the scale of the lattice constant.

To conclude, we comment on the quantum-relativistic
analog of Eq. �5�, referring the reader to Gusynin et al.
�2007� for a more extensive discussion. In three dimen-
sions, and with a change of sign for one of the two sub-
blocks vp ·�, Eq. �5� represents the Dirac �or Dirac-
Weyl� equation of massless neutrinos, with v the speed
of light. The valley degree of freedom corresponds to
the chirality of neutrinos, which have left-handed or
right-handed circular polarization �corresponding to the
opposite sign of the two subblocks�. In two dimensions,
the relative sign of the two subblocks can be changed by
a unitary transformation, so the distinction between left
or right handedness cannot be made. Electrons in
graphene are called “chiral” because their direction of
motion is tied to the direction of the pseudospin. Indeed,
the current operator

j = v� � �0 �7�

is proportional to the pseudospin operator �, so that an
electron moving in the x or y direction has a pseudospin
pointing in the x or y direction. Because the pseudospin
is two-dimensional, there is no analog of circular polar-
ization, and therefore there is no left or right handed-
ness in graphene.

B. Time-reversal symmetry

The time reverse of the state �XeiK·r+�X� e−iK·r

on the X=A ,B sublattice is the complex conjugate
�

X
* e−iK·r+�

X
�*eiK·r. This implies that the time re-

verse of the spinor �= ��A ,�B ,−�B� ,�A� � is T�
= ��

A
�* ,�

B
�* ,−�

B
* ,�

A
* �. The time-reversal operator T,

therefore, has the form

1Next-nearest-neighbor hopping contributes second-order
spatial derivatives, which are of higher order in a�k and may
therefore be neglected in first approximation.

2The valley-isotropic representation �5� of the four- dimen-
sional Dirac equation �with two identical 2�2 subblocks� is
used to write boundary conditions in a compact form �see Sec.
II.C�. Other representations �with two unequal subblocks� are
common in the literature as well, and one should be aware of
this when comparing formulas from different papers.

FIG. 4. Honeycomb lattice of a carbon monolayer. The unit
cell contains two atoms, labeled A and B, each of which gen-
erates a triangular sublattice �open and closed circles�. The
lattice constant a is �3 times larger than the carbon-carbon
separation of 0.142 nm. The reciprocal-lattice vector K has
length 4 /3a. The edge of the lattice may have the armchair
configuration �containing an equal number of atoms from each
sublattice�, or the zigzag configuration �containing atoms from
one sublattice only�. Dashed circles and bonds indicate missing
atoms and dangling bonds, respectively. The separation W of
opposite edges is measured from one row of missing atoms to
the opposite row, as indicated.
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T =�
0 0 0 1

0 0 − 1 0

0 − 1 0 0

1 0 0 0
C = − ��y � �y�C , �8�

with C the operator of complex conjugation. Notice that
the time-reversal operation interchanges the valleys �Su-
zuura and Ando, 2002�.

The time reverse of the Dirac Hamiltonian ��6�� is

TH�A�T−1 = H�− A� . �9�

As it should be, time-reversal symmetry is preserved in
the absence of a magnetic field.

The Dirac Hamiltonian satisfies another antiunitary
symmetry, SH�A�S−1=H�−A�, with

S =�
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
C = i��0 � �y�C . �10�

This operator S does not interchange the valleys, unlike
T, but like T it does invert the sign of p and �. The
operator S, therefore, acts like a time-reversal operator
in a single valley. The S symmetry of the Dirac Hamil-
tonian is called a symplectic symmetry, while the T sym-
metry is called an orthogonal symmetry.3

Because it is not the true time-reversal symmetry op-
erator on the honeycomb lattice, the symplectic symme-
try can be broken even in the absence of a magnetic field
�Berry and Mondragon, 1987�. Consider the following
two perturbations �H of the Dirac Hamiltonian:

• A mass term �H=��r��z � �z, generated, for ex-
ample, by a sublattice-dependent potential in the
substrate �Zhou et al., 2007�.

• A valley-dependent vector potential, �H
=ev	A�r� ·�
 � �z, produced by straining the mono-
layer �Morozov et al., 2006; Morpurgo and Guinea,
2006�.4

In both cases, T�HT−1=�H, so time-reversal symmetry
is preserved, while S�HS−1=−�H, so the symplectic
symmetry is broken.

Whether it is the T symmetry or S symmetry that gov-
erns a transport property depends on whether the scat-
tering processes couple valleys or not. A smoothly vary-
ing electrostatic potential does not cause intervalley
scattering, so it is the presence or absence of the sym-
plectic symmetry S that matters in this case. 	For ex-
ample, breaking of S destroys the weak antilocalization

effect, even if T is preserved �Suzuura and Ando, 2002;
Aleiner and Efetov, 2006; McCann et al., 2006�.

Andreev reflection at a superconductor does couple the
valleys �Beenakker, 2006�, so there it is the true time-
reversal symmetry T that matters. 	For example, break-
ing of T suppresses the supercurrent while breaking of S
does not �Heersche et al., 2007�.


C. Boundary conditions

The Dirac equation needs to be supplemented by a
boundary condition of the form �=M� at the edge of
the graphene sheet �McCann and Fal’ko, 2004�. Since
edges are typically abrupt on the atomic scale, the
boundary condition couples the valleys. Ignoring a pos-
sible local magnetization, we may assume that M com-
mutes with T—meaning that the boundary condition it-
self does not break time-reversal symmetry. The
boundary condition then has the form �Akhmerov and
Beenakker, 2007b�

� = M�, M = �� · �� � �n · �� , �11�

parametrized by a pair of three-dimensional unit vectors
� and n. The vector n is constrained by n ·nB=0 to en-
sure that no current leaks out through the boundary
�with normal nB, pointing outward�.

We give three examples of boundaries �Berry and
Mondragon, 1987; Brey and Fertig, 2006a�:

• A zigzag edge has either �A=�A� =0 or �B=�B� =0,
depending on whether the row of missing atoms at
the edge is on the A or B sublattice �see Fig. 4�. The
corresponding boundary condition matrix M has �
= ± ẑ, n= ẑ. Because opposite zigzag edges lie on dif-
ferent sublattices, the angle � between the vectors �
on opposite edges equals , irrespective of the edge
separations.

• An armchair edge has �XeiK·r+�X� e−iK·r=0 for X
=A ,B, so that the wave function vanishes on both
sublattices. This requires � · ẑ=0, n= ẑ�nB. The angle
�= �K�W+ now depends on the separation W �as
defined in Fig. 4�: �= if 2W /a is a multiple of 3 and
�= ± /3 otherwise.

• Confinement by an infinite mass has �= ẑ, n= ẑ�nB.

The two eigenstates �+�� and �−�� of � ·� �defined by
� ·��±��= ± �±��� are states of definite valley
polarization—parallel or antiparallel to the unit vector
�. This vector is called the valley isospin, because it
transforms under rotations in the same way as the real
electron spin. It can be represented by a point on the
Bloch sphere, see Fig. 5. When � points in the ẑ direc-
tion, the polarization is such that the eigenstate lies en-
tirely within one single valley. This is the case for the
zigzag edge or for the infinite mass confinement. When �
lies in the x-y plane, the eigenstate is a coherent equal-
weight superposition of the two valleys. This is the case
for the armchair edge.

3A symplectic symmetry operator is an antiunitary operator
that squares to −1, while an orthogonal symmetry operator is
an antiunitary operator that squares to +1. Both T and S are
antiunitary �product of a unitary operator and complex conju-
gation�, but T2=1 while S2=−1.

4A ripple of diameter R and height H corresponds to a ficti-
tious magnetic field of order B��� /ea�H2 /R3, of opposite sign
in the two valleys.
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The direction of � in the boundary matrix M plays a
key role in a strong magnetic field by selecting the valley
polarization of edge states �Akhmerov and Beenakker,
2007b�. Edge states in the lowest Landau level are valley
polarized �Abanin et al., 2006; Brey and Fertig, 2006b�
but the Hall conductance is insensitive to the direction �
of the valley isospin.5 In Sec. V.C, we show how Andreev
reflection and Klein tunneling both provide a way to
measure the valley isospin in the quantum Hall effect.

We conclude this discussion of boundary conditions
with the constraint imposed by electron-hole symmetry.
In the absence of an electrostatic potential �U=0�, the
Dirac Hamiltonian �6� anticommutes with �z ��z. In an
unbounded system, this implies electron-hole symmetry
of the spectrum. �If � is an eigenstate with eigenvalue E,
then �z ��z� is an eigenstate with eigenvalue −E.� The
electron- hole symmetry exists already at the level of the
tight-binding model �3� �E�−E if �B�−�B�, so it is
preserved by any boundary that is simply a termination
of the lattice �zero edge potential�.6 The requirement
that the boundary matrix M in Eq. �12� commutes with
�z ��z �needed to preserve the electron- hole symmetry�
restricts M to either the zigzag form or the armchair
form. As illustrated in Fig. 6, the zigzag form is the rule
while the armchair form is the exception �Akhmerov
and Beenakker, 2008�.

D. Pseudodiffusive dynamics

Electrical conduction through a graphene sheet has
unusual features when the Fermi level is at the Dirac

point. Because the density of states vanishes, the trans-
mission through a strip of undoped graphene �width W,
length L in the current direction� occurs entirely via eva-
nescent �exponentially decaying� modes. For a short and
wide strip, there is a large number W /L�1 of evanes-
cent modes with transmission probability of order unity.
In a remarkable coincidence,7 the transmission prob-
abilities of the evanescent modes are the same as those
of diffusive modes in a disordered piece of metal with
the same conductance �Tworzydło et al., 2006�. We re-
turn to this “pseudodiffusive” dynamics in Sec. III.D,
when describeing how supercurrent flows through un-
doped ballistic graphene in the same way as it does
through a disordered metal.

In preparation for that discussion, we examine in
more detail the transmission of evanescent modes
through undoped graphene �Katsnelson, 2006; Tworzy-
dło et al., 2006�. Because the wavelength at the Dirac
point is infinitely long, the detailed shape of the electro-
static potential profile at the interface between the metal
contacts and the graphene sheet is not important. We
model it by the rectangular potential shown in Fig. 7.
The contact area is modeled by heavily doped graphene
	for more microscopic models, see Blanter and Martin
�2007�, Robinson and Schomerus �2007�, and Schomerus
�2007�
. The Fermi level in Fig. 7 lies in the conduction
band in the contact areas at the left and right and in the
valence band in the central region. Conduction in this
situation occurs via interband �Klein� tunneling, from
conduction band to valence band, and we discuss this
further in Sec. IV.

The situation in which we are interested here is when
the Fermi energy coincides with the energy, of the Dirac
point in the central region. At that energy interband
tunneling goes over into intraband tunneling. For W /L
�1, we do not need to know the individual transmission
probabilities of the evanescent modes �which will de-
pend on the boundary condition at y=0,W�, but it suf-
fices to know how many modes ��T�dT �counting all de-
generacy factors� there are with transmission
probabilities in the interval �T ,T+dT�. The result is

5The Hall conductance GH=ge2 /h is determined by the de-
generacy factor g of edge states. The celebrated “half-integer”
Hall conductance GH= �n+1/2��4e2 /h measured by No-
voselov et al. �2005� and Zhang et al. �2005� tells us that the
lowest �n=0� Landau level has spin degeneracy but no valley
degeneracy �g=2 rather than g=4�. The direction of the valley
polarization does not enter in GH.

6One mechanism that may produce an edge potential at a
zigzag boundary �antiferromagnetic spin ordering� has been
discussed in connection with graphene nanoribbons by Son et
al. �2006�.

7We say “coincidence” because we have no intuitive explana-
tion for this correspondence.

FIG. 5. �Color online� Location of the valley isospin � on the
Bloch sphere for a zigzag edge �arrows along the zaxis� and for
an armchair edge �arrows in the x-y plane�. The solid and
dashed arrows correspond to opposite edges.

FIG. 6. Two graphene flakes having the same zigzag boundary
condition: �= ±�z ��z�. The sign switches between � and �
at the armchair orientation �when the tangent to the boundary
has an angle with the y axis that is a multiple of 60°� From
Akhmerov and Beenakker, 2008.
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��T� =
g

2T�1 − T
, g =

4W

L
, �12�

with g the conductance in units of e2 /h. We call the dy-
namics pseudodiffusive because the distribution �12�
happens to coincide with the known distribution �Dor-
okhov, 1984� for diffusion modes8 in a disordered metal
having the same dimensionless conductance g�1.

The value for g in Eq. �12� has been confirmed experi-
mentally by Miao et al. �2007�. To test for the bimodal
shape of the distribution ��T�, one would need to mea-
sure the shot noise at the Dirac point. The Fano factor
�ratio of shot noise power and mean current� should
equal �Tworzydło et al. 2006�

F = 1 −

�
0

1

T2��T�dT

�
0

1

T��T�dT

=
1
3

, �13�

as in a disordered metal �Beenakker and Büttiker, 1992�.
This 1

3 Fano factor has now been confirmed experimen-
tally as well �Danneau et al., 2008�.

III. ANDREEV REFLECTION

A. Electron-hole conversion

Andreev reflection is the conversion of electron into
hole excitations by the superconducting pair potential
�Andreev, 1964�. The process is illustrated in Fig. 8 for
the band structure of graphene. The electron excitation
is a filled state at energy � above the Fermi energy EF,
while the hole excitation is an empty state at � below EF.

The excitation energy � is the same, so that Andreev
reflection is an elastic process. Since the electron and
hole have opposite charge ±e, a charge of 2e is lost in the
conversion process. This missing charge is absorbed by
the superconductor as a Cooper pair. For � below the
superconducting gap �, electrons can enter only pair-
wise into the superconductor, and the Andreev reflected
hole is the empty state left behind by the electron that is
paired with the incident electron to form a Cooper pair.

The electron and hole in Fig. 8 are taken from oppo-
site corners ±K of the Brillouin zone, in order to allow
the Cooper pair to carry zero total momentum. This cor-
responds to the case of s-wave pairing, common in con-
ventional �low-temperature� superconductors. Andreev
reflection in grapheme, therefore, switches the valleys
�Beenakker, 2006�. The switching of valleys by Andreev
reflection due to s-wave pairing in the superconductor is
analogous to the switching of spin bands due to singlet
pairing. The latter can be detected by producing a spin
polarization in the normal metal �De Jong and Beenak-
ker, 1995�. Analogously, the former can be detected by
producing a valley polarization in graphene, as discussed
in Sec. V.C.

The electron and hole in Fig. 8 are both from the
conduction band. This intraband Andreev reflection ap-
plies if �	EF. For ��EF, the hole is an empty state in
the valence band, rather than in the conduction band. In
undoped graphene, when EF=0, Andreev reflection is
interband at all excitation energies. Interband Andreev
reflection does not exist in usual metals, having an exci-
tation gap �� between the conduction and valence
bands. The peculiar differences between intraband and
interband Andreev reflection are explained next.

B. Retroreflection vs specular reflection

Andreev �1964� discovered that the electron-hole con-
version at a superconductor is associated with retrore-
flection rather than specular reflection. Retroreflection
means that the reflected hole retraces the path of the
incident electron �see Fig. 9, left panel�, so all compo-
nents of the velocity change sign. In undoped graphene,
in contrast, Andreev reflection is specular �right panel�,

8The T’s for diffusion modes are the eigenvalues of the trans-
mission matrix product tt†. The distribution ��T� for diffusion
modes has a cutoff at exponentially small T�exp�−2L / l�, with
l the mean free path �Beenakker, 1997�. The distribution �12�
for evanescent modes has a cutoff at exp�−4L /�F��, with �F�
the Fermi wavelength in heavily doped regions. In either case,
the cutoff is irrelevant for transport properties.

en
er

gy

Fermi energy

valence band
electrons

(Dirac sea)

conduction
band

electrons

Dirac energy

FIG. 7. �Color online� Electrostatic potential profile �solid
line� producing two heavily doped graphene regions at the left
and right and a weakly doped region �length L� at the center.
The central region is undoped when the Fermi energy �dashed
line� coincides with the energy of the Dirac point. Electrical
conduction then proceeds via evanescent �exponentially decay-
ing� modes.

conduction band

Brillouin zone

valence band

FIG. 8. �Color online� Electron and hole excitations in the
conical band structure of graphene �filled and empty circles at
energies EF±��, converted into each other by Andreev reflec-
tion at a superconductor.
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so only the component perpendicular to the interface
changes sign �Beenakker, 2006�.

Inspection of the dispersion relation shows why intra-
band Andreev reflection leads to retroreflection while
interband Andreev reflection leads to specular reflec-
tion. The linear dispersion relation �1� in graphene may
be rewritten in terms of the excitation energy �= �E
−EF�,

� = �EF ± �v��kx
2 + �ky

2�1/2� . �14�

The � sign distinguishes excitations in the conduction
and valence bands. Let the interface with the supercon-
ductor be at x=0 and the electron approach the inter-
face from x�0. Since �ky and � are conserved upon
reflection, the reflected state is a superposition of the
four �kx values that solve Eq. �14� at given �ky and �.
The derivative �−1d� /d�kx is the expectation value vx of
the velocity in the x direction, so the reflected state con-
tains only the two �kx values having a positive slope.
One of these two allowed �kx values is an electron exci-
tation, the other a hole excitation. As illustrated in Fig.
10, the reflected hole may be either an empty state in the
conduction band �for �	EF� or an empty state in the

valence band ���EF�. A conduction-band hole moves
opposite to its wave vector, so vy changes sign as well as
vx �retroreflection�. A valence-band hole, in contrast,
moves in the same direction as its wave vector, so vy
remains unchanged and only vx changes sign �specular
reflection�.

The transition from retroreflection to specular reflec-
tion as � increases beyond EF is illustrated in Fig. 11.
The reflection angle �out �measured relative to the nor-
mal� first becomes greater than the angle of incidence
�in, then jumps from +90° to −90° at �=EF, and finally
approaches −�in when ��EF.

As shown in Fig. 12, specular Andreev reflection cre-
ates charge-neutral propagating modes along an un-
doped graphene channel with superconducting bound-
aries �Titov et al., 2007�. In contrast, retroreflection
creates bound states known as Andreev levels �Andreev,
1964; Kulik, 1970�. The propagating “Andreev modes”
contribute to the thermal conductance along the
graphene channel in a way that is sensitive to the super-
conducting phase difference across the channel. They
may also be used to carry a charge-neutral spin current
along the channel �Greenbaum et al., 2007�. We return to
this geometry in Sec. III.D, when considering the cur-
rent across the channel �from one superconductor to the
other� rather than along the channel.

C. Dirac–Bogoliubov–de Gennes equation

So far our discussion of Andreev reflection in
graphene has been semiclassical, in terms of electron
and hole trajectories. Quantum mechanically, the cou-
pling of electron and hole wave functions �e and �h is

Andreev retro-reflection specular Andreev reflection

superconductor superconductor

FIG. 9. �Color online� Andreev retroreflection �left panel� at
the interface between a normal metal and a superconductor.
Arrows indicate the direction of the velocity, and solid or
dashed lines distinguish whether the particle is a negatively
charged electron �e� or a positively charged hole �h�. Specular
Andreev reflection �right panel� at the interface between un-
doped graphene and a superconductor. From Beenakker, 2006.

Andreev retro-reflection specular Andreev reflection

FIG. 10. �Color online� Dispersion relation �14� in graphene
for two values of the Fermi energy EF=�vkF, for the case of
normal incidence ��ky=0, �kx��k�. Electron excitations �filled
states above the Fermi level, from one valley� and hole excita-
tions �empty states below the Fermi level, from the other val-
ley� are both indicated. Solid and dotted lines distinguish the
conduction and valence bands, respectively. The electron-hole
conversion upon reflection at a superconductor is indicated by
the arrows. Specular Andreev reflection �right panel� happens
if an electron in the conduction band is converted into a hole
in the valence band. In the usual case �left panel�, the electron
and hole both lie in the conduction band. From Beenakker,
2006.

FIG. 11. �Color online� Trajectories of an incident electron
and the Andreev reflected hole, for different excitation ener-
gies � relative to the Fermi energy EF, at fixed angle of inci-
dence. For �	EF, the hole is in the conduction band �solid
lines�, while for ��EF the hole is in the valence band �dashed
lines�. The reflected trajectories rotate clockwise with increas-
ing �, jumping by 180° when �=EF.

superconductor

superconductor

superconductor

superconductor

Andreev level Andreev mode

FIG. 12. �Color online� The transition from retroreflection to
specular Andreev reflection in a graphene channel with super-
conducting boundaries induces a transition from a localized
level �left� to a propagating mode �right�. The latter state con-
tributes to thermal transport along the channel, but not to
electrical transport. From Titov et al., 2007.
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described by the Dirac–Bogoliubov–de Gennes �DBdG�
equation �Beenakker, 2006�,

�H�A� − EF ���0 � �0�
�*��0 � �0� EF − H�− A�

���e

�h
� = ���e

�h
� . �15�

The complex pair potential �=�0ei� is nonzero only in
the superconducting region, where it couples the time-
reversed states

�e = ��A,�B,−�B� ,�A� � ,

�h = T�e = ��A
�*,�B

�*,−�B
* ,�A

* � . �16�

The boundary condition for the DBdG equation at the
edges of the graphene sheet is given by the same Eq.
�11� for both �e and �h,

�e = M�e, �h = M�h, �17�

since we are assuming that M commutes with T.
In the normal region ��0, so that there �e and �h

satisfy the uncoupled equations

H�A��e = �EF + ���e,

H�− A��h = �EF − ���h. �18�

Andreev reflection at the normal-superconductor �NS�
interface couples �e to �h. This coupling may be de-
scribed by means of a boundary condition at the NS
interface for the wave function in the normal region
�Titov and Beenakker, 2006�,

�h = e−i�e−i�nB·�
� �0�e, �19�

where �=arccos�� /�0���0, /2� �assuming �	�0�. The
unit vector nB is perpendicular to the NS interface,
pointing from N to S. By substituting the definition �16�
of �e and �h, we see that the boundary condition �19�
couples electron excitations in one valley to hole excita-
tions in the other valley �in accord with the description
of Andreev reflection given in Sec. III.A�. In contrast,
the boundary condition �17� at the edges of the graphene
sheet does not couple �e and �h.

The relation �19� follows from the DBdG equation
�15� under three assumptions characterizing an “ideal”
NS interface:

• The Fermi wavelength �F� in S is sufficiently small
that �F��� ,�F, where �F=hv /EF is the Fermi wave-
length in N and �=�v /�0 is the superconducting co-
herence length.

• The interface is smooth and impurity free on the
scale of �.

• There is no lattice mismatch at the NS interface, so
the honeycomb lattice of graphene is unperturbed at
the boundary.

The absence of lattice mismatch might be satisfied by
depositing the superconductor on top of a heavily doped
region of graphene. As in the case of a semiconductor
two-dimensional electron gas �Volkov et al., 1995; Fagas
et al., 2005�, we expect that such an extended supercon-

ducting contact can be effectively described by a pair
potential � in the x-y plane �even though graphene by
itself is not superconducting�.

At normal incidence, �e and �h are eigenstates of
nB ·�, so the boundary condition �19� implies that �h
=�e��a phase factor� and the electron-hole conversion
happens with unit probability. This is entirely different
from usual NS junctions, where Andreev reflection is
suppressed at any angle of incidence if the Fermi wave-
lengths at the two sides of the interface are different.

D. Josephson junctions

The boundary condition �19� at a normal-
superconducting interface depends on the phase � of
the superconductor, although this dependence is unob-
servable if there is only a single superconductor. A Jo-
sephson junction is a junction between two supercon-
ductors with a controllable phase difference �=�1−�2.
A current I��� flows from one superconductor to the
other if ��0. The current flows in equilibrium, so it is a
dissipationless supercurrent. This is the Josephson effect
�Josephson, 1964�. Since I is 2 periodic in �, there ex-
ists a maximal supercurrent Ic that can flow between the
superconductors. This is called the critical current of the
Josephson junction.

There is a thermodynamic relation �Anderson, 1963�

I =
2e

�

dF

d�
�20�

between the supercurrent I and the derivative of the free
energy F with respect to the superconducting phase dif-
ference. The free energy can in turn be related to the
excitation spectrum, which itself follows from the DBdG
equation. At zero temperature and in the short-junction
limit �separation L of the two NS interfaces ���, the
resulting relation is �Beenakker and Van Houten, 1992�

I = −
2e

�
�
n

d

d�
�n��� , �21�

with �n	�0 the energy of a �spin-degenerate� bound
state in the Josephson junction.

To calculate the supercurrent �in zero magnetic field�,
one therefore needs to solve the two eigenvalue equa-
tions �18� �with A=0� in the strip 0	x	L, 0	y	W
�see Fig. 13�. At x=0,L there is the phase-dependent

W

FIG. 13. �Color online� Josephson junction, formed by a
graphene layer �N� with two superconducting electrodes �S� a
distance L apart, having a phase difference �=�1−�2. From
Titov and Beenakker, 2006.
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boundary condition �19�, which couples �e to �h, while
the boundary condition �11� at y=0,W is phase indepen-
dent and does not couple �e to �h.

The result of this calculation �Titov and Beenakker,
2006� is that the critical current is given, up to numerical
coefficients of order unity, by

Ic �
e�0

�
max�W/L,W/�F� . �22�

�The dependence on the boundary condition at y=0,W
can be neglected under the assumption L�W of a short
and wide junction.� At the Dirac point EF=0 one has
�F→�, so the critical current reaches its minimal value
��e�0 /��W /L �see Fig. 14, upper panel�. Instead of be-
ing independent on the length L of the junction, as ex-
pected for a short ballistic Josephson junction, the criti-
cal current at the Dirac point has the diffusionlike
scaling �1/L. This is another manifestation of the
“pseudodiffusive” dynamics discussed in Sec. II.D.

Since the normal-state resistance scales as �Katsnel-
son, 2006; Tworzydło et al., 2006�

1/RN � GN � �e2/h�max�W/L,W/�F� , �23�

the theory predicts that the IcRN product remains of or-
der �0 /e �up to a numerical prefactor� as the Fermi level
passes through the Dirac point �Fig. 14, lower panel�.
The experimental result of Heersche et al. �2007� for the
Josephson junction of Fig. 2, shown in Fig. 15, is quali-
tatively similar to the theoretical prediction, but there
are significant quantitative differences: The experimen-
tal IcRN product at the Dirac point is about 60�V
�0.5�0 /e, more than twice the theoretical prediction,
and the increase at higher carrier densities is much
larger than predicted. It is quite likely that disorder in
the experimental sample, which is not included in the
calculation, is responsible for these differences �Du et
al., 2008�.

E. Further reading

In the spirit of a Colloquium, we have only discussed
the basic physics of Andreev reflection in graphene. In
this section, we give some pointers to the literature on
other aspects of this topic.

The pseudodiffusive dynamics at the Dirac point, dis-
cussed in Sec. III.D in connection with the critical cur-
rent Ic of an SNS junction, extends to the entire current-
phase relationship I��� in equilibrium �Titov and
Beenakker, 2006�, as well as to the dissipative current
out of equilibrium �Cuevas and Levy Yeyati, 2006�. In
each case, a short and wide strip of undoped ballistic
graphene �length L short compared to width W and su-
perconducting coherence length ��9 behaves as a disor-
dered metal having the same normal-state conductance
GN.

Pseudodiffusive dynamics also governs the conduc-
tance GNS through a ballistic graphene strip �L�W�
having a single superconducting contact �Akhmerov and
Beenakker, 2007a; Prada et al., 2007�, in the sense that
the ratio GNS/GN at the Dirac point is the same as for a
disordered metal. The correspondence holds only for
voltages V small compared to �v /L. At larger voltages,
the current- voltage characteristic of a ballistic NS junc-
tion in graphene has unusual features �Beenakker, 2006;
Bhattacharjee and Sengupta, 2006; Bhattacharjee et al.,
2007�—without a diffusive analog. These have been
studied experimentally by Miao et al. �2007� and Shailos
et al. �2007�. Similarly unusual I-V characteristics have
been predicted in bilayer graphene �Ludwig, 2007�.

9This short-junction limit is essential: Pseudodiffusive dynam-
ics in SNS junctions breaks down if L becomes larger than W
�Moghaddam and Zareyan, 2006; González and Perfetto, 2007�
or if L becomes larger than � �Titov et al., 2007�. A tunnel
barrier �Maiti and Sengupta, 2007� or p-n junction �Ossipov et
al., 2007� in the normal region also spoils the pseudodiffusive
analogy.

FIG. 14. Critical current Ic and IcRN product of a ballistic
Josephson junction �length L short compared to the width W
and superconducting coherence length ��, as a function of the
Fermi energy EF in the normal region. Small and large EF
asymptotes are indicated by dashed lines. From Titov and
Beenakker, 2006.

FIG. 15. Product of the critical current Ic and the normal state
resistance RN vs gate voltage Vgate, measured at T=30 mK in
the Josephson junction of Fig. 2. The carrier density in the
graphene layer is linearly proportional to Vgate, while the
Fermi energy EF��Vgate. The resistance RN is measured in the
presence of a small magnetic field to drive the electrodes in the
normal state. From Heersche et al., 2007.
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The Dirac–Bogoliubov–de Gennes equation of Sec.
III.C assumes isotropic �s-wave� pairing in the supercon-
ductor. The equation may be readily modified to the
case of anisotropic �d-wave� pairing, relevant for NS
contacts between graphene and a high-temperature su-
perconductor. The conductance in the two cases has
been compared by Linder and Sudbø �2007�. Another
modification, studied by Wehling et al. �2007�, is to in-
clude electrical or magnetic scattering potentials in the
superconducting region.

More exotic �px+ ipy or dx2−y2 + idxy� pairings may be
possible �Uchoa and Castro Neto, 2007; Jiang et al.,
2008� if graphene could be chemically modified to be-
come an intrinsic superconductor �rather than having
the superconductivity induced by the proximity effect�.
Ghaemi and Wilczek �2007� have argued that the special
topological properties �non-Abelian statistics� of vorti-
ces in a superconductor with px+ ipy pairing apply as
well to the s-wave DBdG equation �15� if the supercon-
ductivity can be induced in undoped graphene.

The idealized model of the NS interface discussed in
Sec. III.C can be much improved, in particular to in-
clude the effects of lattice mismatch and a self-consistent
calculation of the induced pair potential. Some numeri-
cal �Wakabayashi, 2003� and analytical �Tkachov, 2007�
work proceeds in this direction.

IV. KLEIN TUNNELING

A. Absence of backscattering

The massless carriers in graphene respond quite dif-
ferently to an electric field than ordinary massive carri-
ers. Because the magnitude v of the carrier velocity is
independent of the energy, an electron moving along the
field lines cannot be backscattered, since that would re-
quire v=0 at the turning point. The absence of back-
scattering was discovered by Ando et al. �1998� in carbon
nanotubes, where it is responsible for the high conduc-
tivity in the presence of disorder. The two-dimensional
nature of the dynamics in graphene introduces some
new aspects.

Electron trajectories in the linear electrostatic poten-
tial U�x�=Fx are shown in Fig. 16. The trajectories are
deflected by the electric field for py�0, but for py=0 no
backscattering occurs. The electron is able to propagate
through an infinitely high potential barrier because it
makes a transition from the conduction band to the va-
lence band �see Fig. 17�. In this transition, its dynamics
changes from electronlike to holelike in the following
sense:

The equation of motion

dr
dt

�
�E

�p
=

v2p
E − U

, �24�

at energy E with v2�p�2= �E−U�2, implies that the veloc-
ity v=dr /dt of the electron is parallel to the momentum

when it is in the conduction band �U	E� and antiparal-
lel when it is in the valence band �U�E�. States with v
parallel to p are called electronlike and states with v
antiparallel to p are called holelike. By making the tran-
sition from electronlike to holelike dynamics, the elec-
tron can continue to move in the same direction even as
its momentum along the field lines goes through zero
and changes sign.

In classical mechanics, backscattering is only avoided
for py=0 �so only if the electron moves along the field
lines�. In quantum mechanics, an electron can tunnel
from the conduction into the valence band, thereby
avoiding backscattering, also for a small but nonzero py.
Such tunneling from an electronlike to a holelike state is
called interband tunneling �Aronov and Pikus, 1967a,
1967b; Weiler et al., 1967; Kane and Blount, 1969� or
Klein tunneling �Katsnelson et al., 2006�, because of an

FIG. 16. �Color online� Classical trajectories of an electron in
the presence of a uniform electric field in the x direction. All
three trajectories are at the same energy; only the component
py of the momentum transverse to the field lines is varied. Two
trajectories are for py�0, while the other trajectory is for py
=0. The electron is in the conduction band of graphene for x
	0 �solid trajectories, velocity parallel to momentum� and in
the valence band for x�0 �dashed trajectories, velocity anti-
parallel to momentum�. Solid and dashed trajectories are
coupled by Klein tunneling.

conduction band

valence band

FIG. 17. �Color online� Band structure of a single valley at two
sides of a potential step �height U0, width d�. The equilibrium
Fermi energy EF is the same at both sides, so that for U0
�EF an electron just above the Fermi level is in the conduc-
tion band at one side and in the valence band at the other side.
Arrows indicate the electron velocity, which is parallel to the
wave vector �or momentum� in the conduction band �left� and
antiparallel in the valence band �right�.
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analogous effect in relativistic quantum mechanics
�Klein, 1929�.10

The probability of Klein tunneling a relativistic elec-
tron in a uniform electric field was calculated by Sauter
�1931�, with an exponentially small result due to the fi-
nite electron mass. The case of massless particles, rel-
evant for graphene, was considered by Cheianov and
Fal’ko �2006�. Pairs of electronlike and holelike trajecto-
ries at the same E and py have turning points at a dis-
tance dmin=2vpy /F. The tunneling probability has an ex-
ponential dependence on this separation,11

T�py� = exp�− �py�dmin/2�� = exp�− vpy
2/�F� , �25�

provided that the longitudinal momentum px
in at x→−�

and px
out at x→� �where the electric field is assumed to

vanish� is sufficiently large,

�px
in�, �px

out�� �py�,��F/v . �26�

Transmission resonances occur when a p-n interface is in
series with an n-p interface, forming a p-n-p or n-p-n
junction �Katsnelson et al., 2006; Milton Pereira et al.,
2006; Milton Pereira, Vasilopoulos, and Peeters, 2007;
Silvestrov and Efetov, 2007�. The unit transmission at
py=0 forbids transmission resonances at normal inci-
dence, in marked contrast with conventional resonant
tunneling through a double-barrier junction.

B. Bipolar junctions

Klein tunneling is the mechanism for electrical con-
duction through the interface between p-doped and
n-doped graphene. Such a bipolar junction is illustrated
in Fig. 18 �Huard et al., 2007�. A top gate creates an
electrostatic potential barrier, so that the Fermi level lies
in the valence band inside the barrier �p-doped region�
and in the conduction band outside the barrier �n-doped
region�. The carrier density ncarrier is the same in the n
and p regions when the Fermi energy EF is half the bar-
rier height U0. In this case, the Fermi momenta pF
��kF in both n and p regions are given by pF=U0 /2v
=Fd /2v, with d the width of the n-p and p-n interfaces

and F=U0 /d the electric field �up to a factor of electron
charge� in that interface region.12

The width d is of the order of the separation between
the graphene layer and the top gate. �Huard et al., 2007�
estimated d�80 nm for their device. The Fermi wave
vector kF=�ncarrier is �10−1 nm−1 for typical carrier
densities of ncarrier�1012 cm−2. Since under these condi-
tions kFd�1, the p-n and n-p interfaces are smooth on
the scale of the Fermi wavelength. This is the regime of
applicability of Eq. �25� for the Klein tunneling probabil-
ity, since the condition �26� of large longitudinal momen-
tum can be rewritten as

pF � �py�,�/d . �27�

The conductance Gp-n of a p-n interface follows by inte-
gration of Eq. �25� over the transverse momenta, with
the result �Cheianov and Fal’ko, 2006�

10Klein tunneling is considered paradoxical in the relativistic
context �Calogeracos and Dombey, 1999�, because holelike
states into which the electron tunnels are unphysical antipar-
ticle states in the Dirac sea. There is no paradox in the context
of graphene, where the role of the Dirac sea is played by the
valence band �see Fig. 7�.

11The asymptotic result �25�, derived by Cheianov and Fal’ko
�2006� and Andreev �2007�, should follow from the general
Kummer-function formula of Sauter �1931� upon substitution
of the electron mass m by py /v and taking the limit �26�. The
asymptotic limit taken by Sauter corresponds to the opposite
regime py�px

in ,px
out ,��F /v in which T�py� is exponentially

small.

12This assumption of a constant electric field in the interface
region requires perfect screening by the carriers in graphene of
the electric field produced by the gate. The lack of screening at
the p-n interface due to the vanishing carrier density enhances
the local electric field by a factor �e2kFd /��v�1/3, with � the
dielectric constant �Zhang and Fogler, 2008�. The value of �
can be as low as 2.4 for a SiO2 substrate and as large as 80 for
graphene on water.

n++ Si (back gate)

PMMA

graphene Ti/Au (top gate)

lead

top gate graphene
sample

a)

b)

c)

2 �m

SiO2

Ti/AuTi/Aulead

FIG. 18. �Color online� n-p-n junction in graphene: �a� Cross-
sectional view of the device. �b� Electrostatic potential profile
U�x� along the cross section of �a�. The combination of a posi-
tive voltage on the back gate and a negative voltage on the top
gate produces a central p-doped region flanked by two
n-doped regions. �c� Optical image of the device. The barely
visible graphene flake is outlined with a dashed line and the
dielectric layer of PMMA appears as a shadow. From Huard
et al., 2007.
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Gp-n =
4e2

h

W

2�
�

−�

�

dpyT�py� =
4e2

h

W

2
� F

�v
. �28�

The factor of 4 accounts for the twofold spin and valley
degeneracy and W is the transverse dimension of the
interface. The integration range may be extended to ±�
because T�py� is vanishingly small for py larger than
��F /v�pF /�kFd�pF. Note that Gp-n is smaller than the
ballistic conductance Gballistic= �4e2 /h�kFW / by the
same factor �kFd that characterizes the smoothness of
the interface.

C. Magnetic field effects

Cheianov and Fal’ko �2006� have predicted that a
relatively weak magnetic field B��� /e��kF /L2d will
suppress the conductance of an n-p-n or p-n-p junction
�of length L� below the series conductance of the indi-
vidual interfaces, as a consequence of the strong angular
dependence of the transmission probability �25�. The
mechanism is illustrated in Fig. 19. The effect is not ob-
served in the device of Huard et al. �2007�, presumably
because of disorder. 	See Fogler et al. �2008� for a calcu-
lation of the conditions required for ballistic transport,
which are only marginally met in existing experiments.


The conductance of a single p-n interface becomes
magnetic field dependent on the much larger field scale
B

*
=F /ev��� /e�kF /d at which the cyclotron radius lcycl

=�kF /eB becomes comparable to the width d of the in-
terface. Shytov, Gu, and Levitov �2007� have calculated
that the angle of incidence �max which is maximally
transmitted rotates away from normal incidence to a
value �max= ±arcsin�B /B

*
�. The effect on the conduc-

tance �28� of the p-n interface is a suppression by a fac-
tor 	1− �B /B

*
�2
3/4.

For B�B
*
, no transmission is possible through the

p-n interface. Instead, states in both the p and n regions
propagate parallel to the interface �Lukose et al., 2007;
Milton Pereira, Peeters, and Vasilopoulos, 2007�. The
corresponding classical trajectories are illustrated in Fig.
20. The direction of propagation along the interface is
the same in both the p and n regions �Abanin and Levi-
tov, 2007�, while the direction of rotation is opposite.
The snake-shaped trajectory centered at the interface

has a mixed electron-hole character. This is the ambipo-
lar analog of snake states that are known to exist in a
nonhomogeneous magnetic field �Müller, 1992; Oros-
zlany et al., 2007; Ghosh et al., 2008�.

The conductance in the high-field regime B�B
*

is not
fully suppressed, but it no longer scales with the width W
of the junction. This will be calculated in Sec. V.C.

D. Further reading

As in Sec. III.E, we mention some papers for further
reading on this topic.

Klein tunneling in a carbon bilayer differs fundamen-
tally from Klein tunneling in a monolayer �Katsnelson et
al., 2006�. The bilayer still has a gapless spectrum 	in the
absence of a potential difference between the layers
�McCann and Fal’ko, 2006; Ohta et al., 2006�
, so inter-
band tunneling can happen with high probability. How-
ever, at normal incidence the probability is 0, while it is
1 in the monolayer. Although electrons in a bilayer are
not massless, as they are in a monolayer, they still have a
definite chirality �direction of motion tied to direction of
pseudospin�. Klein tunneling in a carbon bilayer is there-
fore different from interband tunneling in a gapless
semiconductor. For example, the chirality forbids trans-
mission resonances at normal incidence.

The perfect transmission at normal incidence in a
monolayer is a robust effect with regard to the shape of
the electrostatic potential profile at the p-n interface �all
that is needed is a potential that is smooth on the scale
of the lattice constant�. A time-dependent electric field
parallel to the interface, however, can suppress the
transmission even at normal incidence �Fistul and Efe-
tov, 2007; Trauzettel et al., 2007�. The suppression is
strongest if the frequency  of the radiation satisfies the
resonance condition  =2v�p� /� at some point in the in-
terface region.

Bipolar junctions may appear naturally in disordered
graphene, when the random electrostatic potential land-
scape produces alternating regions of p-type and n-type
doping �Martin et al., 2008�. Classical percolation
through such a random network of bipolar junctions has
been studied by Cheianov, Fal’ko, Altshuler and Aleiner
�2007�. At zero Fermi energy �when the areas of p-type

FIG. 19. Two trajectories in a p-n-p junction, the lower one
�transmitted� in zero magnetic field and the upper one �re-
flected� in a small but nonzero field. Because only trajectories
with an angle of order 1/�kFd�1 around normal incidence are
transmitted through the p-n and n-p interfaces, a relatively
weak magnetic field suppresses the series conductance of the
interfaces by bending the trajectories away from normal inci-
dence. From Cheianov and Fal’ko, 2006.

FIG. 20. �Color online� Electron trajectories along a p-n inter-
face in a magnetic field B�B

*
�when there is no transmission

through the interface�. The electron rotates in opposite direc-
tions in the conduction band �solid trajectories� and in the va-
lence band �dashed�. The trajectory centered at the interface
represents an “ambipolar snake state.”
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and n-type doping are the same�, the percolation length
remains finite because of Klein tunneling.

Klein tunneling is also responsible for the finite life-
time of an electron state bound to a charged impurity in
graphene �Shytov, Katsnelson, and Levitov, 2007�. Such
quasibound states exist for �=Ze2 /��vF�1/2, with Ze
the impurity charge. The discrete states exist in the con-
duction band near the impurity, but they are coupled by
Klein tunneling to the continuum of states in the valence
band away from the impurity. The resulting resonances
�having width-to-energy ratio e−2�� may be observable
by measuring the local density of states with a scanning
probe.

V. ANALOGIES

In the previous two sections, we discussed NS and p-n
junctions separately. In this section, we address the
analogies between these two systems. Both involve the
coupling of electronlike and holelike states, either by the
superconducting pair potential �in the NS junction� or by
the electrostatic potential �in the p-n junction�. An ob-
vious difference is that the two types of states lie at the
same side of the NS interface but at opposite sides of the
p-n interface. The analogies, therefore, involve a reflec-
tion of the geometry along the interface �Tworzydło et
al., 2007�.

A. Mapping between NS and p-n junction

A precise mapping �Beenakker et al., 2008� between
NS and p-n junctions is possible under two conditions:

• The electrostatic potential U in the p-n junction is
antisymmetric, U�−x ,y�=−U�x ,y�, with respect to
the p-n interface at x=0.

• The NS interface may be described by the boundary
condition �19� at x=0.

A uniform perpendicular magnetic field B may or may
not be present. Under these conditions, a p-n junction
has the same excitation spectrum as an NS junction for
EF=0 and excitation energies ���0. This correspon-
dence follows from the fact that, if � is an eigenstate of
the Dirac Hamiltonian �6� of the p-n junction with
eigenvalue13 �, then we can construct an eigenstate
��e ,�h� in the normal part x�0 of the NS junction by

�e�x,y� =��x,y� ,

�h�x,y� = ie−i���x � �0���− x,y� � P��x,y� . �29�

Here =ie−i���x � �0�R, with R the reflection operator
�x�−x�. Since � is continuous at x=0, the boundary
condition �19� at the NS interface is automatically satis-
fied for ���0. Furthermore, from H�=�� and H�A�
=−H�−A� �with A=Bxŷ�, it follows that �e and �h sat-

isfy the DBdG equation �18� in the normal region.
The applicability of the mapping may be extended in

several ways: The p-n junction may have boundaries de-
scribed by the boundary condition ��r�=M�r���r� for r
at the boundary. �We assume that this relation holds for
all r by setting M�1 when r is not at the boundary.� The
mapping to an NS junction still holds, provided that M
commutes with P, which requires

��x � �0�M�x,y� = M�− x,y���x � �0� . �30�

This ensures that the transformed wave function �29� in
the NS junction satisfies the corresponding boundary
condition �17�. For example, an armchair boundary
along the x axis �with M��x independent of x� satisfies
the requirement �30�, but a zigzag boundary along the x
axis �M��z� does not. A pair of zigzag boundaries at
x= ±L 	with M�±L ,y�= ±�z � �z
, on the other hand,
does satisfy the requirement �30�.

The Dirac Hamiltonian �6� of the p-n junction may
also contain an additional term �H without spoiling the
mapping to the NS junction, provided that �H anticom-
mutes with the operator product T,

PT�H = − �HPT . �31�

Considering the two examples of a �H mentioned in
Sec. II.B, we see that the mass term preserves the
mapping if ��x ,y�=��−x ,y�, while the valley-dependent
vector potential should satisfy Ax�−x ,y�=−Ax�x ,y�,
Ay�−x ,y�=Ay�x ,y�.

B. Retroreflection versus negative refraction

We apply the mapping of the previous section to an
abrupt p-n junction, as shown in Fig. 21. By “abrupt” we
mean that the width d of the potential step at the p-n
interface should be small compared to the Fermi wave-
length �F=hv /U0. In Sec. IV.B, we discussed the oppo-
site regime d��F of a smooth interface, when only elec-
trons approaching the interface near normal incidence
are transmitted. For an abrupt interface, the transmis-
sion probability is large also away from normal inci-
dence, and an unusual effect of negative refraction ap-
pears �Cheianov, Fal’ko, and Altshuler, 2007�: Upon
crossing the p-n interface, the sign of the tangential ve-
locity component is inverted.

The lower panels in Fig. 21 show how the classical
trajectories in the p-n and NS junctions are mapped
onto each other by reflection along the interface. Ret-
roreflection in the NS junction �inversion of the tangen-
tial velocity component upon conversion from electron
to hole� maps onto negative refraction in the p-n junc-
tion. As the excitation energy � increases beyond the
step height U0, negative refraction crosses over into
positive refraction at the p-n junction in the same way
that retroreflection crosses over into specular reflection
at the NS junction �compare Figs. 11 and 22�.

Because the mapping �29� is quantum mechanical, it is
not only the trajectories that are mapped onto each
other, but also the full diffraction pattern together with

13Since the spectrum of the p-n junction is symmetric around
zero energy, it suffices to consider energies ��0.
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the quantum-mechanical transmission and reflection
probabilities. For example, when ��U0 ,�0, the NS junc-
tion has a probability Reh=cos2� for Andreev reflection
�electron to hole� and a probability Ree=sin2� for normal
reflection �electron to electron�. This result �Beenakker,
2006� agrees with the transmission and reflection prob-
abilities T ,R in an abrupt p-n junction calculated by
Cheianov and Fal’ko �2006� upon mapping Reh�T and
Ree�R. For normal incidence ��=0�, both retroreflec-
tion and negative refraction happen with unit probabil-
ity.

Negative refraction was first discovered in optics,14

where it is used as a way to make a flat lens known as a
Veselago lens �Veselago, 1968�. 	For a tutorial, see Pen-
dry and Smith �2004�.
 As calculated by Cheianov,
Fal’ko, and Altshuler �2007�, an abrupt p-n interface
produces an inverted image in the p- region of a scat-
terer in the n region. An n-p-n or p-n-p junction inverts
the image twice, reproducing the original image at the
other side of the junction �see Fig. 23�. The Veselago
lens in graphene is not ideal: Negative refraction only
produces a perfect focus at �=0, while at other energies
the focus is spread into a caustic. Caustics �focal lines,
rather than focal points� also appear if the p-n interface
is curved rather than straight �Cserti et al., 2007�.

C. Valley-isospin-dependent quantum Hall effect

In Sec. II.C, we mentioned that the edge states in the
lowest Landau level are valley polarized, with a valley
isopin � determined by the boundary condition �11� at
the edge. Here we discuss how this valley polarization
can be measured in a conduction experiment on either a
p-n junction or an NS junction.

The two geometries are compared in Fig. 24. Elec-
tronlike and holelike valley-polarized edge states hy-
bridize along the p-n or NS interface to form a valley-
degenerate electron-hole state. �In the p-n case, this
state corresponds classically to the snake-shaped trajec-
tory in Fig. 20.� The two-terminal conductance G
=G0Teh is determined by the probability Teh that an
electronlike state is converted into a holelike state at the
opposite edge �with G0=2e2 /h in the p-n junction and
G0=4e2 /h in the NS junction�.15 As shown by Akhmerov
and Beenakker �2007b� and Tworzydło et al. �2007�, in
the absence of intervalley scattering, this probability

14The most direct analogy is with the work of Notomi �2000�
on negative refraction in two-dimensional photonic crystals
with the same honeycomb lattice as graphene.

15One factor of 2 in G0 comes from the spin degeneracy. The
NS junction has one more factor of 2 because the electron-to-
hole conversion transfers two electrons across the junction.

FIG. 21. �Color online� Comparison of two systems that can be
mapped onto each other by the transformation �29�. The upper
graphs show the electrostatic potential profile �solid lines� of a
p-n junction �left� and the corresponding NS junction �right,
with U��U0�. The upper right graph also shows the supercon-
ducting pair potential � �dashed line�. The excitation spectrum
of the two systems is the same for ���0. Classical trajectories
in the two systems are related by reflection along the interface,
as shown in the lower graphs for �=0 �solid lines indicate elec-
tronlike trajectories and dashed lines holelike trajectories�.

FIG. 22. Trajectories of an incident and refracted electron at a
p-n interface, for different excitation energies � relative to the
potential step height U0, at fixed angle of incidence. For �
	U0, the refracted electron is in the valence band �dashed
lines�, while for ��U0 it is in the conduction band �solid lines�.
The refracted trajectories rotate counterclockwise with in-
creasing �, jumping by 180° when �=U0. The transformation
x�−x maps this transition from negative to positive refraction
onto the transition from retroreflection to specular reflection
in the NS junction of Fig. 11.

FIG. 23. �Color online� Classical trajectories �dotted lines� in
an n-p-n junction at an energy �=0 that is halfway the poten-
tial step across the n-p and p-n interfaces, so that the refrac-
tion precisely inverts the angle of incidence. A scatterer in the
n-region �solid diagonal line� has an inverted image in the cen-
tral p region and a noninverted image in the other n-region.
This is the principle of operation of the Veselago lens.
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Teh =
1
2

�1 − cos�� �32�

depends only on the angle � between the valley isospins
of the electronlike state at the two edges.

Equation �32� assumes that the electronlike and hole-
like edge channels at one edge have opposite valley isos-
pins �±�L for the left edge and ±�R for the right edge�.16

Since the unidirectional motion of the edge states pre-
vents reflections, the total transmission matrix ttotal
= tRtinttL from one to the other edge is the product of
three 2�2 unitary matrices: the transmission matrix tL
from the left edge to the p-n or NS interface, the trans-
mission matrix tint along the interface, and the transmis-
sion matrix tR from the interface to the right edge. In the
absence of intervalley scattering, tint=ei�int�0 is propor-
tional to the unit matrix in the valley degree of freedom,
while

tX = ei�X� + �X��+ �X� + ei�X� �− �X��− �X� �33�

�with X=L ,R� is diagonal in the basis �±�X� of eigen-
states of �X ·�. The phase shifts �int ,�X ,�X� need not be
determined. Evaluation of the transmission probability

Teh = ��+ �L�ttotal� − �R��2 �34�

leads to the conductance

G =
1
2

G0�1 − cos�� , �35�

with cos�=�L ·�R.
The angle �=4W /3a+ between the valley isospins

at two opposite armchair edges depends on the width W
�as defined in Fig. 4�: �= if 2W /a is a multiple of 3,
�= /3 if it is not �see Fig. 5�. A tight-binding model
calculation of an armchair nanoribbon containing a po-
tential step �Fig. 25� shows that the conductance as a

function of the step height switches from a plateau at the
�-independent Hall conductance G0 in the unipolar re-
gime �n-n junction� to a �-dependent value given by Eq.
�35� in the bipolar regime �p-n junction�. The plateau
persists in the presence of a random potential, provided
it is smooth on the scale of the lattice constant so no
intervalley scattering is introduced.

The valley-isospin dependence of the quantum Hall
effect makes it possible to use strain as a means of vary-
ing of the height of the conductance plateaus. As men-
tioned in Sec. II.B, strain introduces a valley-dependent
vector potential in the Dirac equation, corresponding to
a fictitious magnetic field of opposite sign in the two
valleys. This field rotates the Bloch vector of the valley
isospin around the z axis, which in the case of an arm-
chair nanoribbon corresponds to a rotation of the valley
isospin in the x-y plane.

In the high-magnetic-field experiments of Özyilmaz et
al. �2007� and Williams et al. �2007�, the p-n junction has
a quantized conductance �see Fig. 26�. This has been
explained by Abanin and Levitov �2007� as the Ohmic
series conductance Gseries=GpGn / �Gp+Gn� of the quan-
tum Hall conductances Gp ,Gn in the p-doped and
n-doped regions �each an odd multiple of the conduc-
tance quantum 2e2 /h�. Ohm’s law would apply if the sys-
tem were sufficiently large that a local equilibrium was
established at the interface, while the non-Ohmic result
�35� would be expected for smaller systems.

D. Pseudosuperconductivity

The correspondence between NS and p-n junctions of
Sec. V.A implies that quantum effects associated with
superconductivity, such as the proximity effect and the
Josephson effect, have analog in nonsuperconducting bi-
polar graphene �Beenakker et al., 2008�.

Such “pseudosuperconductivity” is demonstrated in
Fig. 27, which plots the density of states ���� in a p-n

16This is generally the case, with one exception: A p-n junc-
tion in a zigzag nanoribbon has electronlike and holelike edge
channels with identical valley isospins �Tworzydło et al., 2007�.

p

FIG. 24. Schematic top view of a graphene nanoribbon con-
taining an interface between a p-doped and n-doped region
�left panel� and between a normal �N� and superconducting
�S� region �right panel�. Electronlike and holelike edge states
in the lowest Landau level are indicated by solid and dashed
lines, respectively, with arrows pointing in the direction of
propagation. From Tworzydło et al., 2007.

FIG. 25. �Color online� Conductance of an armchair nanorib-
bon containing the potential step U�x�= 1

2 	tanh�2x /L�+1
U�,
calculated numerically from a tight- binding model in a per-
pendicular magnetic field �magnetic length lm��� /eB=5a�.
The step height U� is varied from below EF �unipolar regime�
to above EF �bipolar regime�, at fixed EF=�v / lm and L=50a.
The solid curves are without disorder, while the dashed curves
are for a random electrostatic potential landscape �correlation
length �=10a�. A different number N of hexagons across the
ribbon are represented, and hence a different width W= �N
+3/2�a: N=97, 98, and 99. The dashed horizontal line marks
the plateau at G= 1

4�2e2 /h. From Tworzydło et al., 2007.
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junction with an abrupt interface. The p and n regions
have the same Fermi energy U0 and zigzag boundaries at
x= ±W. The width W is assumed to be large compared
to the Fermi wavelength �F=hv /U0. The density of
states, smoothed over rapid oscillations, vanishes lin-
early as

���� = �0�/ET �36�

for small �, with �0= �2U0 /���v�−2 the density of states
�per unit area and including spin plus valley degenera-
cies� in the separate p and n regions. The energy ET
=�v /2W is the Thouless energy �which is �� for W
��F�. This suppression of the density of states at the

Fermi level by a factor � /ET is analogous to an NS junc-
tion, where the density of states is suppressed by the
superconducting proximity effect �Titov et al., 2007�. In
particular, the peaks in ���� at �=ET�n+1/2�, n
=0,1,2, . . ., are analogous to the de Gennes–Saint James
resonances in Josephson junctions �de Gennes and
Saint-James, 1963�.

In a semiclassical description, the suppression of the
density of states in the p-n junction can be understood
as destructively interfering of the electronlike and hole-
like segments of a periodic orbit 	solid and dashed lines
in Fig. 27�a�
. At the Fermi level, the dynamical phase
shift accumulated in the p and n regions cancels, and
what remains is a Berry phase shift of  from rotating
the pseudospin of a Dirac fermion.

If the p and n regions enclose a magnetic flux �, as in
the ring geometry of Fig. 28 �inset�, then the Berry phase
shift can be compensated and suppressing the density of
states can be eliminated. The resulting flux dependence
of the ground-state energy E=A�−�

0 �����d� �with A the
joint area of the n and p regions� implies that a current
I=dE /d� will flow through the ring in equilibrium, as in
a Josephson junction �Imry, 1997�. According to Eq.
�36�, the order of magnitude

I0 = �e/��ET
2 /� = �e/��NET �37�

of this persistent current is set by the level spacing �
= �A�0�−1 and by the Thouless energy ET=�v /r=N� in
the ring geometry �of radius r and width w�r, support-
ing N=4U0w /�v�1 propagating modes�. Because of
the macroscopic suppression of the density of states, this
is a macroscopic current—larger by a factor N than the
mesoscopic persistent current in a ballistic metal ring
�Büttiker et al., 1983; Imry, 1997�.

Figure 28 plots I��� for an abrupt p-n junction in an
N-mode ring without intermode scattering �Beenakker
et al., 2008�. The maximal persistent current is Ic�0.2I0.
Up to a numerical coefficient, this result for Ic is the
same as the critical current of a ballistic Josephson
junction.17

17For a detailed comparison of the persistent current through
the bipolar junction and the supercurrent through the analo-
gous Josephson junction, see Beenekker et al., 2008.

3

2

1

0 -1.0 0.0

FIG. 26. �Color online� Experimental conductance of a gate-
controlled p-n junction in graphene. The conductance of the
n-doped region at one side of the interface is fixed at �f1�e2 /h,
with f1=2, while the conductance �f2�e2 /h at the other side of
the interface is varied by the gate voltage �values of f2 are
indicated, with negative numbers corresponding to a p-doped
region�. In the unipolar regime �f1f2�0�, the conductance of
the junction is G=min��f1� , �f2��e2 /h, while in the bipolar regime
�f1f2	0� the conductance is the Ohmic series conductance G
�h /e2= �f1f2� / ��f1�+ �f2��. From Williams et al., 2007.

FIG. 27. �Color online� The density of states ���� for the p-n
junction shown in �a�. The dotted line is the value in the iso-
lated p and n regions, which is energy independent for ���
�U0. The density of states vanishes at the Fermi level ��=0�,
according to Eq. �37�. The NS junction shown in �b� has the
same density of states. In both the NS and p-n geometries, the
suppression of the density of states is due to destructively in-
terfering of the electronlike and holelike segments of periodic
orbits at the Fermi level �indicated by solid blue and dashed
green trajectories�. From Beenakker et al., 2008.

FIG. 28. Persistent current through a ring containing an abrupt
p-n interface, as a function of the magnetic flux through the
ring. From Beenakker et al., 2008.
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This concludes the review of Andreev reflection and
Klein tunneling in graphene. The analogies discussed in
this section will hopefully be validated soon by ongoing
experiments on bipolar junctions and Josephson junc-
tions. From a different perspective, the correspondence
between these two phenomena offers the intriguing op-
portunity to observe superconducting analogies in non-
electronic systems governed by the same Dirac equation
as graphene. An example would be a two-dimensional
photonic crystal on a honeycomb or triangular lattice
�Sepkhanov et al., 2007; Garcia-Pomar et al., 2008;
Haldane and Raghu, 2008�.
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